Search Results for

    Show / Hide Table of Contents

    Class RegressionResults

    Class that holds the results of a run of Vec.Regress.

    Inheritance
    object
    RegressionResults
    Inherited Members
    object.Equals(object)
    object.Equals(object, object)
    object.GetHashCode()
    object.GetType()
    object.MemberwiseClone()
    object.ReferenceEquals(object, object)
    object.ToString()
    Namespace: TimeSeriesAnalysis
    Assembly: TimeSeriesAnalysis.dll
    Syntax
    public class RegressionResults

    Constructors

    | Edit this page View Source

    RegressionResults()

    Default constructor, sets all values to null or zero.

    Declaration
    public RegressionResults()

    Properties

    | Edit this page View Source

    AbleToIdentify

    True if able to identify, otherwise false

    Declaration
    public bool AbleToIdentify { get; set; }
    Property Value
    Type Description
    bool
    | Edit this page View Source

    Bias

    The bias term of the linear regression

    Declaration
    public double Bias { get; set; }
    Property Value
    Type Description
    double
    | Edit this page View Source

    Gains

    The gains of the linear regression

    Declaration
    public double[] Gains { get; set; }
    Property Value
    Type Description
    double[]
    | Edit this page View Source

    NfittingBadDataPoints

    Number of bad data point ignored in the fitting data set

    Declaration
    public int NfittingBadDataPoints { get; set; }
    Property Value
    Type Description
    int
    | Edit this page View Source

    NfittingTotalDataPoints

    Total number of data points in the fitting data set

    Declaration
    public int NfittingTotalDataPoints { get; set; }
    Property Value
    Type Description
    int
    | Edit this page View Source

    ObjectiveFunctionValue

    The value of the objective function after regression

    Declaration
    public double ObjectiveFunctionValue { get; set; }
    Property Value
    Type Description
    double
    | Edit this page View Source

    Param

    All regression parameters, first the gains, then the bias term.

    Declaration
    public double[] Param { get; set; }
    Property Value
    Type Description
    double[]
    | Edit this page View Source

    Param95prcConfidence

    The 95 percent confidence of parameters The confidence interval will be Param +/- Param95prcConfidence

    Declaration
    public double[] Param95prcConfidence { get; set; }
    Property Value
    Type Description
    double[]
    | Edit this page View Source

    RegressionWarnings

    Regression warnings

    Declaration
    public List<RegressionWarnings> RegressionWarnings { get; set; }
    Property Value
    Type Description
    List<RegressionWarnings>
    | Edit this page View Source

    Rsq

    R2-root-means-squared between Y and Y_modelled for the tuning dataset(a value between 0 and 100, higher is better)

    Declaration
    public double Rsq { get; set; }
    Property Value
    Type Description
    double
    | Edit this page View Source

    VarCovarMatrix

    The variance/covariance matrix of the regression run

    Declaration
    public double[][] VarCovarMatrix { get; set; }
    Property Value
    Type Description
    double[][]
    | Edit this page View Source

    Y_modelled

    The modelled output

    Declaration
    public double[] Y_modelled { get; set; }
    Property Value
    Type Description
    double[]
    • Edit this page
    • View Source
    In this article
    Back to top Generated by DocFX