Skip to the content.

NeqSim vs Norwegian Handbook: Emission Calculation Methods Comparison

πŸ“– Related Documentation:

Overview

This document compares the conventional Norwegian handbook method for emission reporting with the NeqSim thermodynamic method implemented via NeqSimLive. The comparison is based on the methodology presented in:

β€œVirtual Measurement of Emissions from Produced Water Using an Online Process Simulator”
Kristiansen et al., Global Flow Measurement Workshop (GFMW), October 2023
Full paper available in docs/GFMW_2023_Emissions_Paper.txt


Norwegian Continental Shelf Emissions Context

Regulatory Framework

The Norwegian Continental Shelf (NCS) is one of the world’s most strictly regulated offshore petroleum provinces:

Metric NCS Statistics (2024)
Total GHG emissions ~10.9 million tonnes COβ‚‚eq
Share of Norway’s total GHG ~25%
nmVOC emissions ~21,500 tonnes
Carbon tax + EU ETS cost ~NOK 1,565/tonne COβ‚‚
Total annual emission cost ~NOK 16 billion

Source: Norwegian Petroleum - Emissions to Air

Key Regulations

  1. Aktivitetsforskriften Β§70 (Activities Regulations): Operators must measure or calculate emissions with quality-assured, representative methods
  2. Norwegian Offshore Emission Handbook: Defines conventional calculation factors
  3. COβ‚‚ Tax Act on Petroleum Activities: Carbon pricing mechanism
  4. EU ETS: Emissions trading system participation

Method Comparison

1. Norwegian Handbook Method (Conventional)

Reference: HΓ₯ndbok for kvantifisering av direkte metan- og nmVOC-utslipp (Retningslinje 044)

Formulas

U_CH4 = f_CH4 Γ— V_pw Γ— Ξ”P Γ— 10⁻⁢  [tonnes/year]
U_NMVOC = f_NMVOC Γ— V_pw Γ— Ξ”P Γ— 10⁻⁢  [tonnes/year]

Parameters

Parameter Symbol Value Unit
Methane solubility factor f_CH4 14 g/(mΒ³Β·bar)
nmVOC solubility factor f_NMVOC 3.5 g/(mΒ³Β·bar)
Produced water volume V_pw varies mΒ³/year
Pressure drop Ξ”P varies bar

Limitations

Issue Impact
COβ‚‚ not included Misses 72-78% of total gas emissions
Fixed factors Cannot reflect real process conditions
No temperature dependence Same factor for 50Β°C and 100Β°C
No salinity correction Same factor for fresh and saline water
No composition dependence Same factor regardless of gas composition
Uncertainty Estimated Β±50% or higher

2. NeqSim Thermodynamic Method

Thermodynamic Model

Equation of State: SRK-CPA (Cubic Plus Association)

The CPA-EoS extends the traditional cubic equation of state with an association term for polar molecules:

P = P_physical + P_association

Where:

Mixing Rule

Uses mixing rule 10 with electrolyte correction for saline produced water (NaCl content).

Binary Interaction Parameters (kij)

Tuned parameters from laboratory validation (Kristiansen et al., 2023):

System kij Formula Temperature Range
Water-COβ‚‚ kij = -0.24 + 0.001121 Γ— T(Β°C) 50-100Β°C
Water-CHβ‚„ kij = -0.72 + 0.002605 Γ— T(Β°C) 50-100Β°C
Water-Cβ‚‚H₆ kij = 0.11 (fixed) All
Water-C₃Hβ‚ˆ kij = 0.205 (fixed) All

Implementation in NeqSim

// Create system with CPA-EoS
SystemSrkCPAstatoil fluid = new SystemSrkCPAstatoil(273.15 + 80, 65.0);
fluid.addComponent("water", 0.85);
fluid.addComponent("CO2", 0.03);
fluid.addComponent("methane", 0.08);
fluid.addComponent("ethane", 0.02);
fluid.addComponent("propane", 0.01);
fluid.addComponent("n-butane", 0.005);
fluid.addComponent("Na+", 0.002);
fluid.addComponent("Cl-", 0.003);

// CPA mixing rule for water-hydrocarbon systems
fluid.setMixingRule(10);
fluid.setMultiPhaseCheck(true);

Advantages

Feature Benefit
Includes COβ‚‚ Captures all emission components
Process conditions Reflects actual P, T variations
Salinity effects β€œSalting-out” reduces gas solubility
Composition-based Uses actual well stream PVT data
Real-time capable Live connection to process data
Validated uncertainty Β±3.6% total gas, Β±7.4% methane

Validation Results (Gudrun Field)

Case Study Parameters

Parameter Value
Field Gudrun (North Sea)
Water salinity 10-11 wt% NaCl
Temperature 75-90Β°C
Separator pressure 65 bara typical
Degasser pressure 3-5 barg
CFU pressure 0.2-1 barg
Validation period 2020-2023

Comparison with Field Measurements

Metric NeqSim vs Measurement
GWR (Gas-Water Ratio) -1% to +4%
COβ‚‚ composition Β±1%
CHβ‚„ composition Β±1%
Total gas mass rate -2% to -7.2% (annual cumulative)
Gas molar mass Good agreement with USM
Gas density Good agreement with USM

Emission Comparison (2022 Data)

Method CHβ‚„ + nmVOC COβ‚‚ Total Gas COβ‚‚ Equivalents
Conventional Handbook 100% 0% Higher 11,000 tonnes
NeqSimLive 22-28% 72-78% Accurate 4,700 tonnes
Reduction - - - -58%

Key Finding: COβ‚‚ Dominates Emissions

The NeqSimLive data revealed that 72-78% of emissions are COβ‚‚, not hydrocarbons as assumed by the conventional method. This fundamentally changes emission reporting:

Conventional: All emissions = CHβ‚„ + nmVOC (high GWP)
Reality:      Most emissions = COβ‚‚ (lower GWP)

Solubility Factor Comparison

Component Handbook Factor NeqSim Calculated Difference
Methane 14 g/(mΒ³Β·bar) 5-6 g/(mΒ³Β·bar) -60%
nmVOC 3.5 g/(mΒ³Β·bar) 1.2-1.4 g/(mΒ³Β·bar) -65%
COβ‚‚ Not included 15-30 g/(mΒ³Β·bar) Missing!

Implementation Complexity Levels

NeqSim supports various implementation levels depending on process complexity:

Level 1: Simple Calculator

For basic flash calculations without full process modeling:

from neqsim import jNeqSim

# Quick emission estimate from single flash
calc = jNeqSim.process.equipment.util.EmissionsCalculator
ch4 = calc.calculateConventionalCH4(water_volume_m3, pressure_drop_bar)

# Or use thermodynamic flash
fluid = jNeqSim.thermo.system.SystemSrkCPAstatoil(273.15 + 80, 4.0)
# ... configure and flash

Level 2: Multi-Stage Degassing Model

For typical produced water treatment trains:

ProducedWaterDegassingSystem system = new ProducedWaterDegassingSystem("Platform PW");
system.setWaterFlowRate(100.0, "m3/hr");
system.setDegasserPressure(4.0, "bara");
system.setCFUPressure(1.2, "bara");
system.setDissolvedGasComposition(composition);
system.run();

// Get comparison report
System.out.println(system.getMethodComparisonReport());

Level 3: Full Process Plant Model

For complex processes like TEG dehydration with emission tracking:

ProcessSystem process = new ProcessSystem();

// Add all unit operations
Stream feed = new Stream("Feed", feedFluid);
Separator separator = new Separator("HP Sep", feed);
TEGAbsorber absorber = new TEGAbsorber("Contactor");
TEGRegeneration regen = new TEGRegeneration("Regenerator");
// ... configure full process

process.add(feed);
process.add(separator);
process.add(absorber);
process.add(regen);
process.run();

// Track emissions from each source
EmissionsCalculator sepEmissions = new EmissionsCalculator(separator.getGasOutStream());
EmissionsCalculator flashEmissions = new EmissionsCalculator(regen.getStillColumn().getGasOut());

Level 4: NeqSimLive (Real-Time Cloud API)

For production operations with live data integration:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   PI/Aspen      │────▢│   SIGMA         │────▢│   NeqSimAPI     β”‚
β”‚   (Field Data)  │◀────│   (Scheduler)   │◀────│   (Cloud)       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                                        β”‚
                                                        β–Ό
                                                β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                                                β”‚   NeqSim        β”‚
                                                β”‚   (Calculation) β”‚
                                                β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                                        β”‚
                        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
                        β–Ό                               β–Ό
                β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                β”‚  Emisoft        β”‚             β”‚  MPRML          β”‚
                β”‚  (Env. Agency)  β”‚             β”‚  (Tax/NPD)      β”‚
                β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key features:


Calibration Requirements

Condition Frequency
Normal operations 2 samples/year
Well composition change Immediate recalibration
Back-production of injection water Immediate recalibration
New wells online Reassess within 1 month

Required Measurements for Calibration

  1. Pressurized water sample from separator outlet
  2. Single-stage flash to atmospheric conditions (15Β°C, 1 atm)
  3. Gas chromatography for composition
  4. GWR measurement (SmΒ³ gas / SmΒ³ water)
  5. Water salinity analysis (NaCl content)

Validation Criteria

Per Norwegian offshore emission handbook, acceptable uncertainty is Β±7.5% for emission gases.

NeqSim achieves:


References

  1. Kristiansen, O., et al. (2023). β€œVirtual Measurement of Emissions from Produced Water Using an Online Process Simulator.” Global Flow Measurement Workshop.

  2. Petroleum Safety Authority Norway. β€œActivities Regulations, Chapter XI - Emissions and discharges to the external environment, Β§70 Measurement and calculation.” https://www.ptil.no/en/regulations/

  3. Norwegian Environment Agency. β€œHΓ₯ndbok for kvantifisering av direkte metan- og nmVOC-utslipp” (Retningslinje 044).

  4. SΓΈreide, I. & Whitson, C.H. (1992). β€œPeng-Robinson predictions for hydrocarbons, COβ‚‚, Nβ‚‚ and Hβ‚‚S with pure water and NaCl brine.” Fluid Phase Equilibria 77: 217-240.

  5. Kontogeorgis, G.M., et al. (2006). β€œTen Years with the CPA Equation of State.” Ind. Eng. Chem. Res. 45: 4869-4878.

  6. Norwegian Petroleum. β€œEmissions to Air.” https://www.norskpetroleum.no/en/environment-and-technology/emissions-to-air/


Conclusion

The NeqSim thermodynamic method provides significant advantages over the conventional Norwegian handbook method:

Aspect Handbook NeqSim
COβ‚‚ emissions ❌ Not captured βœ… Full accounting
Process conditions ❌ Fixed factors βœ… Real-time P, T, composition
Salinity effects ❌ Ignored βœ… Electrolyte model
Uncertainty Β±50%+ Β±3.6%
Automation ❌ Manual annual βœ… Live API (NeqSimLive)
Regulatory compliance βœ… Accepted βœ… More accurate

Key outcome from Gudrun: Reported emissions reduced from 11,000 to 4,700 tonnes COβ‚‚eq (-58%) by using the more accurate thermodynamic method.

For facilities with significant produced water handling, implementing NeqSim-based emission calculations can:

  1. Improve reporting accuracy
  2. Identify actual emission sources
  3. Support emission reduction initiatives
  4. Ensure regulatory compliance with better uncertainty

Document generated from NeqSim emission calculation framework. See ProducedWaterEmissions_Tutorial.md for implementation details.