NeqSim Field Development - Mathematical Reference
This document provides the complete mathematical foundations for the field development framework, linking thermodynamic calculations to economic evaluation and decision support.
Table of Contents
- Thermodynamic Foundations
- Production Modeling
- Flow Assurance & Hydraulics
- Economic Calculations
- Decision Analysis
- Uncertainty Quantification
- Emissions & Sustainability
1. Thermodynamic Foundations
1.1 Equations of State
NeqSim supports multiple equations of state. The general cubic EoS form:
\[P = \frac{RT}{V-b} - \frac{a(T)}{(V+\delta_1 b)(V+\delta_2 b)}\]| EoS | $\delta_1$ | $\delta_2$ | Use Case |
|---|---|---|---|
| SRK | 1 | 0 | General hydrocarbon systems |
| Peng-Robinson | $1+\sqrt{2}$ | $1-\sqrt{2}$ | Liquid density improvement |
| CPA | SRK base | + association | Water, glycols, alcohols |
Critical Properties
\[a_c = \Omega_a \frac{R^2 T_c^2}{P_c}, \quad b = \Omega_b \frac{R T_c}{P_c}\]Temperature Dependence (Soave-type)
\[\alpha(T) = \left[1 + m\left(1 - \sqrt{T_r}\right)\right]^2\] \[m = 0.48 + 1.574\omega - 0.176\omega^2\]1.2 Mixing Rules
Classical (van der Waals): \(a_{mix} = \sum_i \sum_j x_i x_j \sqrt{a_i a_j}(1-k_{ij})\) \(b_{mix} = \sum_i x_i b_i\)
CPA Association Term: \(Z^{assoc} = -\frac{1}{2}\sum_i x_i \sum_{A_i} \left(1 - X_{A_i}\right)\)
Where $X_{A_i}$ is the fraction of sites A on molecule i NOT bonded.
1.3 Flash Calculations
PT Flash Objective (Rachford-Rice): \(f(\beta) = \sum_i \frac{z_i(K_i - 1)}{1 + \beta(K_i - 1)} = 0\)
Where:
- $\beta$ = vapor fraction
- $z_i$ = overall composition
- $K_i = y_i/x_i$ = equilibrium ratio
Fugacity Coefficient: \(\ln \phi_i = \frac{1}{RT}\int_V^\infty \left(\frac{\partial P}{\partial n_i}\bigg|_{T,V,n_{j\neq i}} - \frac{RT}{V}\right)dV - \ln Z\)
2. Production Modeling
2.1 Inflow Performance Relationship (IPR)
Vogel’s Equation (oil wells below bubble point): \(\frac{q_o}{q_{o,max}} = 1 - 0.2\left(\frac{P_{wf}}{P_r}\right) - 0.8\left(\frac{P_{wf}}{P_r}\right)^2\)
Darcy’s Law (single-phase liquid): \(q = \frac{2\pi k h}{\mu B \ln(r_e/r_w)} (P_r - P_{wf})\)
Productivity Index: \(J = \frac{q}{P_r - P_{wf}} \quad \text{[Sm³/d/bar]}\)
2.2 Vertical Lift Performance (VLP)
Pressure Traverse: \(\frac{dP}{dL} = \frac{\rho_m g \sin\theta}{1 - \frac{\rho_m v_m v_{sg}}{P}} + \frac{f \rho_m v_m^2}{2D} + \frac{\rho_m v_m dv_m}{dL}\)
Components:
- Gravity: $(\rho_m g \sin\theta)$
- Friction: $(f \rho_m v_m^2 / 2D)$
- Acceleration: $(\rho_m v_m dv_m/dL)$
2.3 Decline Curve Analysis
Arps Hyperbolic: \(q(t) = \frac{q_i}{(1 + b D_i t)^{1/b}}\)
Where:
- $q_i$ = initial rate
- $D_i$ = initial decline rate
- $b$ = hyperbolic exponent (0 ≤ b ≤ 1)
Cumulative Production: \(N_p = \frac{q_i}{D_i(1-b)}\left[1 - \left(\frac{q}{q_i}\right)^{1-b}\right]\)
2.4 TransientWellModel Equations
Drawdown (radial flow): \(P_{wf} = P_i - \frac{q \mu B}{4\pi kh}\left[\ln\left(\frac{4kt}{\phi \mu c_t r_w^2 \gamma}\right) + 2S\right]\)
Dimensionless Pressure: \(P_D = \frac{2\pi kh(P_i - P_{wf})}{q \mu B}\)
Dimensionless Time: \(t_D = \frac{kt}{\phi \mu c_t r_w^2}\)
3. Flow Assurance & Hydraulics
3.1 Beggs & Brill Correlation
No-Slip Liquid Holdup: \(\lambda_L = \frac{v_{SL}}{v_m}\)
Where superficial velocities: \(v_{SL} = \frac{Q_L}{A}, \quad v_{SG} = \frac{Q_G}{A}, \quad v_m = v_{SL} + v_{SG}\)
Flow Pattern Boundaries:
| Transition | Equation |
|---|---|
| $L_1$ | $316 \lambda_L^{0.302}$ |
| $L_2$ | $0.0009252 \lambda_L^{-2.4684}$ |
| $L_3$ | $0.10 \lambda_L^{-1.4516}$ |
| $L_4$ | $0.5 \lambda_L^{-6.738}$ |
Liquid Holdup (Segregated): \(H_L(0) = \frac{0.980 \lambda_L^{0.4846}}{Fr^{0.0868}}\)
Liquid Holdup (Intermittent): \(H_L(0) = \frac{0.845 \lambda_L^{0.5351}}{Fr^{0.0173}}\)
Liquid Holdup (Distributed): \(H_L(0) = \frac{1.065 \lambda_L^{0.5824}}{Fr^{0.0609}}\)
Inclination Correction: \(H_L(\theta) = H_L(0) \cdot \psi(\theta)\)
\[\psi = 1 + C\left[\sin(1.8\theta) - \frac{1}{3}\sin^3(1.8\theta)\right]\]3.2 Pressure Drop Calculation
Two-Phase Friction Factor: \(\Delta P_f = \frac{f_{tp} \rho_n v_m^2 L}{2D}\)
Normalized Friction Factor: \(f_{tp} = f_n \cdot e^S\)
Where $S$ depends on: \(y = \frac{\lambda_L}{H_L^2}\)
Elevation Component: \(\Delta P_g = \rho_m g L \sin\theta\)
Mixture Density: \(\rho_m = \rho_L H_L + \rho_G (1 - H_L)\)
3.3 Hydrate Formation
Hammerschmidt Equation (inhibitor depression): \(\Delta T = \frac{K_H \cdot w}{M(100-w)}\)
Where:
- $\Delta T$ = temperature depression (°C)
- $K_H$ = inhibitor constant (1297 for MEG)
- $w$ = weight percent inhibitor
- $M$ = molecular weight of inhibitor
CSMGem-type correlation (implemented in NeqSim): \(\ln\left(\frac{f_w^H}{f_w^L}\right) = \frac{\Delta\mu_w^0}{RT} + \sum_i \ln(1-\theta_i)\)
3.4 Wax Appearance Temperature
Coutinho Model: \(\ln(\gamma_i^s x_i^s) = \frac{\Delta H_{fus,i}}{R}\left(\frac{1}{T_m} - \frac{1}{T}\right) + \frac{\Delta C_p}{R}\left(\frac{T_m-T}{T} + \ln\frac{T}{T_m}\right)\)
4. Economic Calculations
4.1 Net Present Value (NPV)
\[NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+r)^t}\]Cash Flow: \(CF_t = Revenue_t - OPEX_t - CAPEX_t - Tax_t\)
4.2 Norwegian Petroleum Tax
Corporate Tax (22%): \(Tax_C = 0.22 \times (Revenue - OPEX - DD\&A - Interest)\)
Special Petroleum Tax (56%): \(Tax_S = 0.56 \times (Revenue - OPEX - Uplift - Special\ DD\&A)\)
Uplift Calculation: \(Uplift = 0.208 \times CAPEX_{eligible}\)
Depreciation (6-year linear): \(DD\&A_t = \frac{CAPEX_{t-6} + CAPEX_{t-5} + ... + CAPEX_{t-1}}{6}\)
After-Tax Cash Flow: \(CF_{at} = Revenue - OPEX - CAPEX - Tax_C - Tax_S\)
4.3 Internal Rate of Return (IRR)
Find $r$ such that: \(\sum_{t=0}^{n} \frac{CF_t}{(1+r)^t} = 0\)
4.4 Payback Period
\[Payback = t^* \text{ where } \sum_{t=0}^{t^*} CF_t \geq 0\]4.5 Capital Efficiency Metrics
Profitability Index: \(PI = \frac{NPV + CAPEX_{PV}}{CAPEX_{PV}}\)
Return on Investment: \(ROI = \frac{\sum CF_{positive}}{CAPEX_{total}}\)
4.6 Breakeven Price
Find $P_{oil}$ such that $NPV = 0$: \(\sum_{t=0}^{n} \frac{(P_{oil} \cdot Q_t - OPEX_t - CAPEX_t - Tax_t(P_{oil}))}{(1+r)^t} = 0\)
5. Decision Analysis
5.1 Multi-Criteria Decision Analysis (MCDA)
Weighted Sum Model: \(S_i = \sum_{j=1}^{m} w_j \cdot \tilde{s}_{ij}\)
Min-Max Normalization:
For “higher is better”: \(\tilde{s}_{ij} = \frac{s_{ij} - s_j^{min}}{s_j^{max} - s_j^{min}}\)
For “lower is better”: \(\tilde{s}_{ij} = \frac{s_j^{max} - s_{ij}}{s_j^{max} - s_j^{min}}\)
Weight Normalization: \(w_j^{norm} = \frac{w_j}{\sum_{k=1}^{m} w_k}\)
5.2 Portfolio Optimization
Objective Function: \(\max Z = \sum_{i=1}^{n} x_i \cdot NPV_i\)
Budget Constraint (by year): \(\sum_{i=1}^{n} x_i \cdot CAPEX_{i,t} \leq Budget_t \quad \forall t\)
Binary Selection: \(x_i \in \{0, 1\}\)
Expected Monetary Value: \(EMV_i = P_i \cdot NPV_i - (1-P_i) \cdot C_{dry}\)
Where:
- $P_i$ = probability of success
- $C_{dry}$ = cost of failure (sunk costs)
5.3 Value of Information (VoI)
\[VoI = EMV_{with\ info} - EMV_{without\ info}\]Perfect Information: \(EVPI = \sum_s P(s) \cdot \max_a \{V(a,s)\} - \max_a \{\sum_s P(s) \cdot V(a,s)\}\)
5.4 Sensitivity Analysis
Tornado Analysis (one-at-a-time): \(\Delta NPV_i = NPV(x_i^{high}) - NPV(x_i^{low})\)
Elasticity: \(E_i = \frac{\partial NPV / NPV}{\partial x_i / x_i} = \frac{\partial \ln(NPV)}{\partial \ln(x_i)}\)
6. Uncertainty Quantification
6.1 Monte Carlo Simulation
Expected Value: \(E[Y] \approx \frac{1}{N} \sum_{i=1}^{N} f(X_i)\)
Variance: \(Var[Y] \approx \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})^2\)
Confidence Interval: \(CI_{95\%} = \bar{Y} \pm 1.96 \frac{s}{\sqrt{N}}\)
6.2 Distribution Functions
Triangular: \(f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & a \leq x \leq c \\ \frac{2(b-x)}{(b-a)(b-c)} & c < x \leq b \end{cases}\)
Lognormal: \(f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)\)
Beta-PERT: \(E[X] = \frac{a + 4m + b}{6}, \quad \sigma^2 \approx \frac{(b-a)^2}{36}\)
6.3 Percentile Calculation
P10, P50, P90: \(P_{p} = X_{(k)} + d(X_{(k+1)} - X_{(k)})\)
Where $k = \lfloor p(N+1) \rfloor$ and $d = p(N+1) - k$
6.4 Correlation Handling
Rank Correlation (Spearman): \(\rho_s = 1 - \frac{6\sum d_i^2}{N(N^2-1)}\)
Iman-Conover Method for inducing correlation in Monte Carlo samples.
7. Emissions & Sustainability
7.1 CO₂ Intensity
\[I_{CO2} = \frac{\sum_{sources} E_{source}}{Q_{oil,equiv}}\]Units: kg CO₂/boe
7.2 Emission Sources
Fuel Gas Combustion: \(E_{fuel} = Q_{fuel} \cdot \rho_{gas} \cdot \frac{M_{CO2}}{M_{CH4}} \cdot (1 + \epsilon)\)
Flaring: \(E_{flare} = Q_{flare} \cdot \rho_{gas} \cdot \frac{44}{16} \cdot \eta_{combustion}\)
Fugitive Emissions (Tier 2): \(E_{fugitive} = \sum_j N_j \cdot EF_j\)
Where $EF_j$ = emission factor for equipment type $j$
7.3 Power Generation Emissions
Gas Turbine: \(E_{GT} = \frac{P_{shaft}}{\eta_{th}} \cdot EF_{NG}\)
Where:
- $\eta_{th}$ = thermal efficiency (typically 0.30-0.40)
- $EF_{NG}$ = 56.1 kg CO₂/GJ (natural gas)
Combined Cycle: \(\eta_{CC} = \eta_{GT} + \eta_{ST}(1 - \eta_{GT})\)
7.4 Carbon Tax Scenarios
Norwegian CO₂ Tax (2025): \(Tax_{CO2} = E_{total} \times 2000 \text{ NOK/tonne}\)
EU ETS Cost: \(Cost_{ETS} = E_{total} \times P_{EUA}\)
Implementation Notes
Numerical Methods
- Flash Calculations: Newton-Raphson with line search
- VLE Equilibrium: Successive substitution with acceleration
- Process Simulation: Sequential modular with tear streams
- Optimization: Greedy heuristics for portfolio, gradient-free for complex objectives
Convergence Criteria
| Calculation | Tolerance |
|---|---|
| Flash (mole balance) | $10^{-10}$ |
| Fugacity coefficients | $10^{-8}$ |
| Process simulation | $10^{-6}$ (relative) |
| Economic NPV | $10^{-4}$ MUSD |
Units Convention
| Quantity | SI Unit | Field Unit |
|---|---|---|
| Pressure | Pa | bara |
| Temperature | K | °C |
| Volume | m³ | Sm³ @ 15°C, 1.01325 bara |
| Mass | kg | tonnes |
| Energy | J | kJ, MW |
| Money | - | MUSD, MNOK |
References
-
Soave, G. (1972). “Equilibrium constants from a modified Redlich-Kwong equation of state.” Chem. Eng. Sci., 27(6), 1197-1203.
-
Peng, D.Y. & Robinson, D.B. (1976). “A New Two-Constant Equation of State.” Ind. Eng. Chem. Fundam., 15(1), 59-64.
-
Beggs, H.D. & Brill, J.P. (1973). “A Study of Two-Phase Flow in Inclined Pipes.” J. Pet. Technol., 25(5), 607-617.
-
Vogel, J.V. (1968). “Inflow Performance Relationships for Solution-Gas Drive Wells.” J. Pet. Technol., 20(1), 83-92.
-
Norwegian Petroleum Directorate (2024). “Petroleum Taxation in Norway.”
-
SPE (2023). “Petroleum Resources Management System (PRMS).”