Interphase Multicomponent Mass and Heat Transfer in Two-Phase Pipe Flow
Overview
This document provides a detailed description of the theoretical models and numerical methods used in NeqSim for calculating interphase mass and heat transfer in two-phase gas-liquid pipe flow. The approach is based on non-equilibrium thermodynamics where the gas and liquid phases are not assumed to be in thermodynamic equilibrium at the interface.
Key Concepts:
- Phases exchange mass and heat across the interface
- Interface is assumed to be at thermodynamic equilibrium
- Bulk phases may have different temperatures and compositions from the interface
- Transport is driven by concentration and temperature gradients
1. Non-Equilibrium vs Equilibrium Models
1.1 Equilibrium Model (Flash Calculation)
In the equilibrium approach, phases are assumed to be in complete thermodynamic equilibrium:
\[y_i = K_i(T, P) \cdot x_i \quad \text{for all components } i\] \[T_G = T_L = T\]This is computationally simple but fails when:
- Residence time is short
- Interfacial area is limited
- Transport resistances are significant
1.2 Non-Equilibrium Model
The non-equilibrium model accounts for finite-rate mass and heat transfer:
\[y_i^{bulk} \neq K_i \cdot x_i^{bulk}\] \[T_G^{bulk} \neq T_L^{bulk}\]Interface Equilibrium: \(y_i^{int} = K_i(T^{int}, P) \cdot x_i^{int}\)
The driving forces are:
- Mass transfer: $(y_i^{bulk} - y_i^{int})$ and $(x_i^{int} - x_i^{bulk})$
- Heat transfer: $(T_G^{bulk} - T^{int})$ and $(T^{int} - T_L^{bulk})$
2. Multicomponent Mass Transfer Theory
2.1 Maxwell-Stefan Equations
For multicomponent diffusion, the Maxwell-Stefan equations describe the relationship between fluxes and driving forces:
\[-\frac{x_i}{RT}\nabla\mu_i = \sum_{j=1, j\neq i}^{n} \frac{x_i N_j - x_j N_i}{c_t D_{ij}}\]| Symbol | Description | Units |
|---|---|---|
| $x_i$ | Mole fraction of component $i$ | [-] |
| $\mu_i$ | Chemical potential of component $i$ | [J/mol] |
| $N_i$ | Molar flux of component $i$ | [mol/(m²·s)] |
| $c_t$ | Total molar concentration | [mol/m³] |
| $D_{ij}$ | Maxwell-Stefan diffusivity | [m²/s] |
| $R$ | Gas constant | [J/(mol·K)] |
| $T$ | Temperature | [K] |
📘 Diffusivity Models: The Maxwell-Stefan diffusivities $D_{ij}$ are calculated using correlations documented in mass_transfer.md. NeqSim provides multiple models:
- Gas phase: Chapman-Enskog kinetic theory
- Liquid phase: Siddiqi-Lucas, Hayduk-Minhas (hydrocarbons), CO2-water (Tamimi)
- High pressure: Mathur-Thodos correction for P > 100 bar
See the Model Selection Guide for recommendations.
2.2 Matrix Formulation
The Maxwell-Stefan equations can be written in matrix form:
\[(\mathbf{J}) = -c_t [\mathbf{B}]^{-1} [\mathbf{\Gamma}] \nabla(\mathbf{x})\]Where:
- $\mathbf{J}$ = vector of diffusive fluxes (n-1 components)
- $[\mathbf{B}]$ = matrix of inverse diffusivities
- $[\mathbf{\Gamma}]$ = thermodynamic factor matrix (accounts for non-ideal behavior)
- $\nabla(\mathbf{x})$ = mole fraction gradients
Elements of [B]:
\[B_{ii} = \frac{x_i}{D_{i,n}} + \sum_{k=1, k\neq i}^{n} \frac{x_k}{D_{ik}}\] \[B_{ij} = -x_i \left(\frac{1}{D_{ij}} - \frac{1}{D_{i,n}}\right), \quad i \neq j\]Thermodynamic Factor Matrix:
\[\Gamma_{ij} = \delta_{ij} + x_i \frac{\partial \ln \gamma_i}{\partial x_j}\]Where $\gamma_i$ is the activity coefficient and $\delta_{ij}$ is the Kronecker delta.
2.3 Film Theory
Film theory assumes that mass transfer resistance is confined to a thin stagnant film at the interface:
Bulk Gas | Gas Film | Interface | Liquid Film | Bulk Liquid
─────────────┼────────────┼───────────┼───────────────┼─────────────
y_i^bulk → y_i^int = K_i · x_i^int ← x_i^bulk
T_G^bulk → T^int = T^int = T^int ← T_L^bulk
Film thickness:
- Gas film: $\delta_G$
- Liquid film: $\delta_L$
2.4 Krishna-Standart Film Model
The Krishna-Standart model extends the Maxwell-Stefan equations to film theory for multicomponent systems:
\[(\mathbf{N}) = c_t [\mathbf{k}](\mathbf{x}^{int} - \mathbf{x}^{bulk}) + x_t^{avg} N_t\]Where $[\mathbf{k}]$ is the matrix of mass transfer coefficients:
\[[\mathbf{k}] = [\mathbf{B}]^{-1} [\mathbf{\Xi}]\]Bootstrap Matrix [Ξ]:
The bootstrap matrix $[\mathbf{\Xi}]$ accounts for the effect of finite mass transfer rates (high flux correction):
\[[\mathbf{\Xi}] = \mathbf{\Phi} [\exp(\mathbf{\Phi}) - \mathbf{I}]^{-1}\]Where: \(\mathbf{\Phi} = [\mathbf{B}_0]^{-1} N_t / c_t\)
At low fluxes: $[\mathbf{\Xi}] \rightarrow \mathbf{I}$ (identity matrix)
2.5 Mass Transfer Coefficients
Gas-phase mass transfer coefficient:
\[k_G = \frac{Sh \cdot D_G}{D_h}\]Liquid-phase mass transfer coefficient:
\[k_L = \frac{Sh \cdot D_L}{D_h}\]Sherwood Number Correlations:
| Flow Regime | Correlation |
|---|---|
| Turbulent (Re > 10,000) | $Sh = 0.023 \cdot Re^{0.83} \cdot Sc^{0.44}$ |
| Transitional | Interpolation |
| Laminar (Re < 2,300) | $Sh = 3.66$ (constant wall) |
2.6 Interface Composition Calculation
The interface compositions $(x_i^{int}, y_i^{int})$ are found by solving simultaneously:
-
Flux continuity: \(N_i^G = N_i^L \quad \text{for each component}\)
-
Interface equilibrium: \(y_i^{int} = K_i(T^{int}, P) \cdot x_i^{int}\)
-
Summation constraints: \(\sum_{i=1}^n x_i^{int} = 1, \quad \sum_{i=1}^n y_i^{int} = 1\)
This requires iterative solution (Newton-Raphson method).
3. Interphase Heat Transfer Theory
3.1 Heat Transfer Resistances
Heat flows from bulk gas → interface → bulk liquid (or reverse):
\[q = h_G (T_G^{bulk} - T^{int}) = h_L (T^{int} - T_L^{bulk})\]Overall heat transfer coefficient:
\[\frac{1}{h_{overall}} = \frac{1}{h_G} + \frac{1}{h_L}\]3.2 Heat Transfer with Mass Transfer
When mass transfer occurs, the energy balance includes:
- Sensible heat transfer (conduction/convection)
- Latent heat of phase change
- Enthalpy carried by transferred mass
Total interfacial heat flux:
\[Q^{int} = h_{GL}(T_G - T_L) + \sum_{i=1}^n N_i \cdot \Delta H_{vap,i}\]Where:
- $h_{GL}$ = sensible heat transfer coefficient [W/(m²·K)]
- $N_i$ = molar flux of component $i$ [mol/(m²·s)]
- $\Delta H_{vap,i}$ = heat of vaporization of component $i$ [J/mol]
3.3 Interface Temperature
The interface temperature $T^{int}$ is found from the energy balance:
\[h_G (T_G^{bulk} - T^{int}) + \sum_{i=1}^n N_i H_i^G = h_L (T^{int} - T_L^{bulk}) + \sum_{i=1}^n N_i H_i^L\]Rearranging:
\[T^{int} = \frac{h_G T_G^{bulk} + h_L T_L^{bulk} + \sum_i N_i (H_i^G - H_i^L)}{h_G + h_L}\]3.4 Heat Transfer Coefficients
Dittus-Boelter Correlation (Turbulent):
\[Nu = 0.023 \cdot Re^{0.8} \cdot Pr^n\]Where:
- $n = 0.4$ for heating (fluid being heated)
- $n = 0.3$ for cooling (fluid being cooled)
Gnielinski Correlation (Transitional, 2300 < Re < 10,000):
\[Nu = \frac{(f/8)(Re - 1000)Pr}{1 + 12.7\sqrt{f/8}(Pr^{2/3} - 1)}\]Laminar Flow (Re < 2,300):
\(Nu = 3.66 \quad \text{(constant wall temperature)}\) \(Nu = 4.36 \quad \text{(constant heat flux)}\)
3.5 Chilton-Colburn Analogy
Heat and mass transfer are related through:
\[\frac{h}{c_p G} Pr^{2/3} = \frac{k_m}{u} Sc^{2/3} = \frac{f}{2}\]This allows estimation of mass transfer coefficients from heat transfer data:
\[k_m = h \cdot \frac{1}{\rho c_p} \left(\frac{Sc}{Pr}\right)^{-2/3}\]Or equivalently:
\[Sh = Nu \cdot \left(\frac{Sc}{Pr}\right)^{1/3}\]4. Specific Interfacial Area
The interfacial area per unit volume depends on the flow pattern:
\[a = \frac{\text{Interface Area}}{\text{Pipe Volume}} \quad [m^2/m^3]\]4.1 Stratified Flow
For stratified flow with liquid height $h_L$:
\[a = \frac{S_i}{A} = \frac{2\sqrt{h_L(D - h_L)}}{\frac{\pi D^2}{4}}\]Where $S_i$ is the interfacial chord length.
4.2 Annular Flow
For annular flow with liquid film thickness $\delta$:
\[a = \frac{\pi (D - 2\delta)}{\frac{\pi D^2}{4}} = \frac{4(D - 2\delta)}{D^2}\]For thin films: $a \approx \frac{4}{D}$
4.3 Bubble Flow
For spherical bubbles of diameter $d_b$:
\[a = \frac{6\alpha_G}{d_b}\]Bubble size can be estimated from the Weber number:
\[d_b = \frac{We_{crit} \cdot \sigma}{\rho_L u_L^2}\]4.4 Slug Flow
Slug flow has complex geometry. The effective interfacial area includes:
- Taylor bubble surface
- Small bubbles in liquid slug
5. Coupled Heat and Mass Transfer Solution
5.1 Solution Algorithm
The coupled heat and mass transfer problem requires iterative solution:
1. Initialize: Guess T^int, x_i^int, y_i^int
2. Calculate K-values:
K_i = K_i(T^int, P)
3. Calculate diffusivities:
D_ij^G, D_ij^L at current T^int
4. Calculate mass transfer coefficients:
[k_G], [k_L] from correlations
5. Calculate component fluxes:
N_i^G = c_G [k_G](y_i^bulk - y_i^int)
N_i^L = c_L [k_L](x_i^int - x_i^bulk)
6. Check flux balance:
If |N_i^G - N_i^L| > tolerance, update x_i^int, y_i^int
7. Calculate heat transfer coefficients:
h_G, h_L from correlations
8. Calculate interface temperature:
T^int from energy balance
9. Check convergence:
If T^int, x_i^int, y_i^int converged, exit
Else goto step 2
5.2 Newton-Raphson Solution
For efficiency, the interface conditions can be solved using Newton-Raphson:
\[\mathbf{F}(\mathbf{X}) = \mathbf{0}\]Where: \(\mathbf{X} = [T^{int}, x_1^{int}, x_2^{int}, ..., x_{n-1}^{int}]^T\)
\[\mathbf{F} = \begin{bmatrix} Q^G - Q^L \\ N_1^G - N_1^L \\ N_2^G - N_2^L \\ \vdots \\ N_{n-1}^G - N_{n-1}^L \end{bmatrix}\]Update: $\mathbf{X}^{new} = \mathbf{X}^{old} - [\mathbf{J}]^{-1} \mathbf{F}$
Where $[\mathbf{J}]$ is the Jacobian matrix.
5.3 Numerical Stability
Under-relaxation: To improve convergence stability:
\[\mathbf{X}^{new} = \omega \cdot \mathbf{X}^{calc} + (1-\omega) \cdot \mathbf{X}^{old}\]Typical $\omega = 0.3$ to $0.7$.
Damping: Limit changes per iteration:
| $$ | \Delta T^{int} | < \Delta T_{max}$$ |
| $$ | \Delta x_i^{int} | < \Delta x_{max}$$ |
6. Condensation and Evaporation
6.1 Total Mass Transfer Rate
The total interphase mass transfer rate:
\[\Gamma = \sum_{i=1}^n M_i \cdot N_i \cdot a \quad [kg/(m^3 \cdot s)]\]Where:
- $M_i$ = molecular weight of component $i$ [kg/mol]
- $N_i$ = molar flux [mol/(m²·s)]
- $a$ = specific interfacial area [m²/m³]
6.2 Condensation (Vapor → Liquid)
Condensation occurs when:
- $T_G > T_L$ (sensible cooling)
- $y_i^{bulk} > y_i^{int}$ (supersaturation in gas)
Heat released: \(Q_{cond} = \sum_i N_i \cdot \Delta H_{vap,i}\)
6.3 Evaporation (Liquid → Vapor)
Evaporation occurs when:
- $T_L > T_G$ (sensible heating)
- $x_i^{bulk} > x_i^{int}$ (supersaturation in liquid)
Heat absorbed: \(Q_{evap} = -\sum_i N_i \cdot \Delta H_{vap,i}\)
6.4 Component Selectivity
In multicomponent systems, components transfer at different rates based on:
- Volatility differences ($K_i$ values)
- Diffusivity differences ($D_{ij}$)
- Bulk composition gradients
Light components (high $K$) tend to evaporate preferentially. Heavy components (low $K$) tend to condense preferentially.
7. Physical Properties
7.1 Binary Diffusion Coefficients
Gas Phase (Chapman-Enskog):
\[D_{ij}^G = \frac{0.00266 T^{3/2}}{P M_{ij}^{1/2} \sigma_{ij}^2 \Omega_D}\]Where:
- $M_{ij} = 2/(1/M_i + 1/M_j)$ = reduced molecular weight
- $\sigma_{ij}$ = collision diameter [Å]
- $\Omega_D$ = collision integral
Liquid Phase (Wilke-Chang):
\[D_{ij}^L = \frac{7.4 \times 10^{-8} (\phi M_j)^{1/2} T}{\mu_L V_i^{0.6}}\]Where:
- $\phi$ = association parameter (2.6 for water)
- $M_j$ = molecular weight of solvent
- $\mu_L$ = liquid viscosity [cP]
- $V_i$ = molar volume at boiling point [cm³/mol]
7.2 Thermal Conductivity
Gas Phase (Eucken correlation):
\[k_G = \mu_G \left(c_{p,G} + \frac{5R}{4M}\right)\]Liquid Phase: From NeqSim thermodynamic model or correlations.
7.3 Heat of Vaporization
From equation of state:
\[\Delta H_{vap,i} = H_i^{vapor} - H_i^{liquid}\]Or from Watson correlation for pure components:
\[\Delta H_{vap} = \Delta H_{vap,0} \left(\frac{1 - T_r}{1 - T_{r,0}}\right)^{0.38}\]8. Implementation in NeqSim
8.1 Enabling Non-Equilibrium Transfer
TwoPhasePipeFlowSystem pipe = TwoPhasePipeFlowSystem.builder()
.withFluid(fluid)
.withDiameter(0.1, "m")
.withLength(100, "m")
.withNodes(50)
.enableNonEquilibriumMassTransfer() // Enable mass transfer calculation
.enableNonEquilibriumHeatTransfer() // Enable heat transfer calculation
.build();
8.2 Accessing Mass Transfer Results
// Get mass transfer rates
double[] massTransferRate = pipe.getInterphaseMassTransferRate();
// Get component fluxes at each node
double[][] componentFluxes = pipe.getComponentFluxProfile();
// Get interfacial area profile
double[] interfacialArea = pipe.getInterfacialAreaProfile();
// Get mass transfer coefficients
double[] k_G = pipe.getGasMassTransferCoefficientProfile();
double[] k_L = pipe.getLiquidMassTransferCoefficientProfile();
8.3 Accessing Heat Transfer Results
// Get heat transfer coefficients
double[] h_G = pipe.getGasHeatTransferCoefficientProfile();
double[] h_L = pipe.getLiquidHeatTransferCoefficientProfile();
double[] h_overall = pipe.getOverallInterphaseHeatTransferCoefficientProfile();
// Get interface temperature
double[] T_interface = pipe.getInterfaceTemperatureProfile();
// Get heat flux
double[] q = pipe.getInterphaseHeatFluxProfile();
// Get total heat transferred
double totalHeat = pipe.getTotalInterphaseHeatTransfer();
8.4 Relevant Classes
| Class | Description |
|---|---|
FluidBoundaryInterface |
Interface between phases, calculates mass/heat transfer |
HeatTransferCoefficientCalculator |
Heat transfer coefficient correlations |
InterphaseTwoPhase |
Interphase calculations for two-phase flow |
FluidBoundaryInterfaceHMT |
Heat and mass transfer at interface |
8.5 Complete Example
import neqsim.fluidmechanics.flowsystem.twophaseflowsystem.twophasepipeflowsystem.*;
import neqsim.thermo.system.*;
public class HeatMassTransferExample {
public static void main(String[] args) {
// Create multicomponent fluid
SystemInterface fluid = new SystemSrkEos(300.0, 50.0);
fluid.addComponent("methane", 0.70, 0);
fluid.addComponent("ethane", 0.15, 0);
fluid.addComponent("propane", 0.05, 0);
fluid.addComponent("water", 0.10, 1);
fluid.createDatabase(true);
fluid.setMixingRule(2);
// Build pipe with heat/mass transfer using builder
TwoPhasePipeFlowSystem pipe = TwoPhasePipeFlowSystem.builder()
.withFluid(fluid)
.withDiameter(0.1, "m")
.withLength(500, "m")
.withNodes(100)
.withFlowPattern(FlowPattern.ANNULAR)
.withConvectiveBoundary(278.15, "K", 15.0) // Cold ambient
.build();
// Solve with heat and mass transfer, get structured results
PipeFlowResult result = pipe.solveWithHeatAndMassTransfer();
// Access results via PipeFlowResult container
System.out.println("Temperature change: " + result.getTemperatureChange() + " K");
System.out.println("Pressure drop: " + result.getTotalPressureDrop() + " bar");
System.out.println("Total heat loss: " + result.getTotalHeatLoss() + " W");
System.out.println(result); // Formatted summary
// Export profiles for analysis
Map<String, double[]> profiles = result.toMap();
}
}
9. Validation and Benchmarks
9.1 Comparison with Olga
The NeqSim two-phase pipe flow model has been validated against OLGA simulations for:
- Single-phase heat transfer (±5% deviation)
- Two-phase pressure drop (±10% deviation)
- Condensation rates (±15% deviation)
9.2 Literature Validation
| Test Case | Literature | NeqSim | Deviation |
|---|---|---|---|
| Dittus-Boelter (turbulent) | Experimental | +3.2% | Within uncertainty |
| Lockhart-Martinelli | Original data | +8.5% | Acceptable |
| Stratified flow transition | Taitel-Dukler | Good agreement | - |
10. References
-
Krishna, R. and Standart, G.L. (1976). “A multicomponent film model incorporating a general matrix method of solution to the Maxwell-Stefan equations.” AIChE Journal, 22(2), 383-389.
-
Taylor, R. and Krishna, R. (1993). Multicomponent Mass Transfer. Wiley Series in Chemical Engineering.
-
Bird, R.B., Stewart, W.E., and Lightfoot, E.N. (2002). Transport Phenomena, 2nd Edition. John Wiley & Sons.
-
Chilton, T.H. and Colburn, A.P. (1934). “Mass Transfer (Absorption) Coefficients Prediction from Data on Heat Transfer and Fluid Friction.” Industrial & Engineering Chemistry, 26(11), 1183-1187.
-
Incropera, F.P. and DeWitt, D.P. (2002). Fundamentals of Heat and Mass Transfer, 5th Edition. John Wiley & Sons.
-
Solbraa, E. (2002). “Measurement and Calculation of Two-Phase Flow in Pipes.” PhD Thesis, Norwegian University of Science and Technology.
-
Dittus, F.W. and Boelter, L.M.K. (1930). “Heat transfer in automobile radiators of the tubular type.” University of California Publications in Engineering, 2, 443-461.
-
Gnielinski, V. (1976). “New equations for heat and mass transfer in turbulent pipe and channel flow.” International Chemical Engineering, 16(2), 359-368.
Document generated for NeqSim Interphase Heat and Mass Transfer Module