Skip to the content.

Thermal Conductivity Models

This guide documents the thermal conductivity calculation methods available in NeqSim for gas, liquid, and multiphase systems.

Table of Contents


Overview

Thermal conductivity ($\lambda$ or $k$) describes a material’s ability to conduct heat. It is essential for:

Units:

Setting a conductivity model:

fluid.initPhysicalProperties();
fluid.getPhase("gas").getPhysicalProperties().setConductivityModel("Chung");
fluid.getPhase("oil").getPhysicalProperties().setConductivityModel("PFCT");

Available Models

PFCT (Pedersen)

The Pedersen Corresponding States method uses methane as a reference fluid with molecular weight corrections.

Class: PFCTConductivityMethodMod86

Principle: Uses corresponding states with methane as reference:

\[\lambda_{mix} = \lambda_{ref}(T_0, P_0) \cdot \frac{\alpha_{mix}}{\alpha_0}\]

where:

Corresponding state mapping: \(T_0 = T \cdot \frac{T_{c,ref}}{T_{c,mix}} \cdot \frac{\alpha_0}{\alpha_{mix}}\)

\[P_0 = P \cdot \frac{P_{c,ref}}{P_{c,mix}} \cdot \frac{\alpha_0}{\alpha_{mix}}\]

Applicable phases: Gas, Oil

Best for:

Usage:

fluid.getPhase("oil").getPhysicalProperties().setConductivityModel("PFCT");

Chung Method

The Chung method (1988) is a corresponding states correlation based on kinetic theory.

Class: ChungConductivityMethod

Equation (dilute gas): \(\lambda_0 = \frac{7.452 \eta_0 \Psi}{M}\)

where:

The correction factor accounts for:

Dense fluid correction: \(\lambda = \lambda_0 \cdot G_2(T^*, \rho^*) + B_1 q B_2\)

where $G_2$ and $B$ terms account for density effects.

Applicable phases: Primarily gas phase

Best for:

Usage:

fluid.getPhase("gas").getPhysicalProperties().setConductivityModel("Chung");

Polynomial Correlation

Uses component-specific polynomial coefficients from the database.

Class: Conductivity (in liquid package)

Equation: \(\lambda = A + BT + CT^2\)

where A, B, C are component-specific parameters.

Database columns: LIQUIDCONDUCTIVITY1, LIQUIDCONDUCTIVITY2, LIQUIDCONDUCTIVITY3

Mixing rule: \(\lambda_{mix} = \sum_i x_i \lambda_i\)

Applicable phases: Liquid

Best for:

Usage:

fluid.getPhase("oil").getPhysicalProperties().setConductivityModel("polynom");

CO₂ Reference

High-accuracy thermal conductivity for CO₂ based on the Vesovic et al. correlation.

Class: CO2ConductivityMethod

Coverage:

Best for:

Usage:

fluid.getPhase("gas").getPhysicalProperties().setConductivityModel("CO2Model");

Model Selection Guide

Application Recommended Model Notes
Petroleum mixtures PFCT Corresponding states with MW correction
Gas processing Chung Good for gases
Simple liquid mixtures polynom Uses database parameters
Pure CO₂ CO2Model High accuracy
Wide P-T range PFCT Robust extrapolation
Polar systems Chung Includes polar corrections

Usage Examples

Basic Conductivity Calculation

import neqsim.thermo.system.SystemSrkEos;
import neqsim.thermodynamicoperations.ThermodynamicOperations;

// Create and flash fluid
SystemInterface fluid = new SystemSrkEos(350.0, 50.0);
fluid.addComponent("methane", 0.85);
fluid.addComponent("ethane", 0.10);
fluid.addComponent("propane", 0.05);
fluid.setMixingRule("classic");

ThermodynamicOperations ops = new ThermodynamicOperations(fluid);
ops.TPflash();

// Initialize physical properties
fluid.initPhysicalProperties();

// Get thermal conductivity
double gasConductivity = fluid.getPhase("gas").getThermalConductivity("W/mK");
System.out.println("Gas thermal conductivity: " + gasConductivity + " W/(m·K)");

Comparing Conductivity Models

String[] models = {"PFCT", "Chung"};

for (String model : models) {
    SystemInterface fluid = createFluid();
    ThermodynamicOperations ops = new ThermodynamicOperations(fluid);
    ops.TPflash();
    fluid.initPhysicalProperties();
    
    fluid.getPhase("gas").getPhysicalProperties().setConductivityModel(model);
    fluid.initPhysicalProperties();
    
    double k = fluid.getPhase("gas").getThermalConductivity("W/mK");
    System.out.println(model + ": " + k + " W/(m·K)");
}

Conductivity vs Pressure

SystemInterface baseFluid = new SystemSrkEos(350.0, 10.0);
baseFluid.addComponent("methane", 1.0);
baseFluid.setMixingRule("classic");

double[] pressures = {10, 50, 100, 150, 200};  // bar

for (double P : pressures) {
    SystemInterface fluid = baseFluid.clone();
    fluid.setPressure(P, "bar");
    
    ThermodynamicOperations ops = new ThermodynamicOperations(fluid);
    ops.TPflash();
    fluid.initPhysicalProperties();
    
    double k = fluid.getPhase(0).getThermalConductivity("W/mK");
    System.out.println("P=" + P + " bar: " + k + " W/(m·K)");
}

Two-Phase System

SystemInterface fluid = new SystemSrkEos(280.0, 30.0);
fluid.addComponent("methane", 0.5);
fluid.addComponent("n-pentane", 0.5);
fluid.setMixingRule("classic");
fluid.setMultiPhaseCheck(true);

ThermodynamicOperations ops = new ThermodynamicOperations(fluid);
ops.TPflash();
fluid.initPhysicalProperties();

if (fluid.hasPhaseType("gas")) {
    System.out.println("Gas k: " + 
        fluid.getPhase("gas").getThermalConductivity("W/mK") + " W/(m·K)");
}
if (fluid.hasPhaseType("oil")) {
    System.out.println("Oil k: " + 
        fluid.getPhase("oil").getThermalConductivity("W/mK") + " W/(m·K)");
}

Physical Background

Kinetic Theory (Dilute Gas)

For dilute gases, thermal conductivity is related to viscosity through:

\[\lambda = \frac{f \cdot \eta \cdot C_v}{M}\]

where:

Mixing Rules

For mixtures, thermal conductivity is typically calculated using:

Mass fraction weighting: \(\lambda_{mix} = \sum_i w_i \lambda_i\)

Molar weighting with interaction: \(\lambda_{mix} = \sum_i \sum_j \frac{x_i x_j \lambda_{ij}}{\sum_k x_k \phi_{ik}}\)

where $\lambda_{ij}$ is a combining rule and $\phi_{ik}$ is an interaction factor.

Pressure Effects

Thermal conductivity increases with pressure, particularly in dense fluids:

The PFCT method accounts for this through corresponding states mapping to reference fluid behavior.


Temperature and Pressure Dependence

Gases

Liquids


References

  1. Pedersen, K.S., et al. (1989). Thermal Conductivity of Crude Oils. Chem. Eng. Sci.
  2. Chung, T.H., et al. (1988). Generalized Multiparameter Correlation. I&EC Res.
  3. Vesovic, V., et al. (1990). The Transport Properties of Carbon Dioxide. J. Phys. Chem. Ref. Data.
  4. Poling, B.E., et al. (2001). The Properties of Gases and Liquids, 5th Ed.