Pipeline Mechanical Design - Mathematical Methods Reference
Complete mathematical reference for pipeline mechanical design calculations in NeqSim.
Table of Contents
- Constants and Parameters
- Wall Thickness Formulas
- Stress Analysis Formulas
- External Pressure and Buckling
- Weight and Buoyancy Formulas
- Thermal Design Formulas
- Structural Design Formulas
- Fatigue Analysis
- Cost Estimation Formulas
Constants and Parameters
Physical Constants
| Symbol | Value | Unit | Description |
|---|---|---|---|
| $g$ | 9.81 | m/s² | Gravitational acceleration |
| $\rho_{sw}$ | 1025 | kg/m³ | Seawater density |
| $\rho_{steel}$ | 7850 | kg/m³ | Carbon steel density |
| $\rho_{conc}$ | 3040 | kg/m³ | Concrete coating density |
| $E$ | 207,000 | MPa | Young’s modulus (steel) |
| $\nu$ | 0.3 | - | Poisson’s ratio |
| $\alpha$ | 11.7×10⁻⁶ | 1/K | Thermal expansion coefficient |
API 5L Material Grades
| Grade | $S_y$ (MPa) | $S_u$ (MPa) | Grade | $S_y$ (MPa) | $S_u$ (MPa) |
|---|---|---|---|---|---|
| A25 | 172 | 310 | X60 | 414 | 517 |
| B | 241 | 414 | X65 | 448 | 531 |
| X42 | 290 | 414 | X70 | 483 | 565 |
| X52 | 359 | 455 | X80 | 552 | 621 |
Design Factors
| Code | Factor | Value | Condition |
|---|---|---|---|
| ASME B31.8 | $F$ | 0.72 | Class 1 (rural) |
| ASME B31.8 | $F$ | 0.60 | Class 2 (semi-developed) |
| ASME B31.8 | $F$ | 0.50 | Class 3 (developed) |
| ASME B31.8 | $F$ | 0.40 | Class 4 (high-density) |
| DNV-OS-F101 | $\gamma_m$ | 1.15 | Material factor |
| DNV-OS-F101 | $\gamma_{SC}$ | 0.96 | Low safety class |
| DNV-OS-F101 | $\gamma_{SC}$ | 1.04 | Medium safety class |
| DNV-OS-F101 | $\gamma_{SC}$ | 1.14 | High safety class |
Wall Thickness Formulas
ASME B31.8 - Gas Transmission Pipelines
Minimum wall thickness (Barlow formula):
\[t_{min} = \frac{P_d \cdot D}{2 \cdot S_y \cdot F \cdot E \cdot T}\]| Symbol | Description | Typical Values |
|---|---|---|
| $P_d$ | Design pressure | MPa |
| $D$ | Outside diameter | m |
| $S_y$ | SMYS | 290-827 MPa |
| $F$ | Design factor | 0.40-0.72 |
| $E$ | Joint factor | 1.0 (seamless) |
| $T$ | Temperature derating | 1.0 (<120°C) |
Maximum Allowable Operating Pressure:
\[MAOP = \frac{2 \cdot S_y \cdot t_{nom} \cdot F \cdot E \cdot T}{D}\]Test Pressure:
\(P_{test} = 1.25 \times MAOP\) (Class 1)
\(P_{test} = 1.40 \times MAOP\) (Class 2-4)
ASME B31.3 - Process Piping
Minimum wall thickness:
\[t_{min} = \frac{P_d \cdot D}{2 \cdot (S_a \cdot E + P_d \cdot Y)}\]| Symbol | Description | Value |
|---|---|---|
| $S_a$ | Allowable stress | $S_y / 3$ |
| $Y$ | Coefficient | 0.4 (T ≤ 482°C) |
ASME B31.4 - Liquid Pipelines
Minimum wall thickness:
\[t_{min} = \frac{P_d \cdot D}{2 \cdot S_y \cdot F \cdot E \cdot T}\]Default design factor $F = 0.72$.
DNV-OS-F101 - Submarine Pipelines
Pressure containment wall thickness:
\[t_1 = \frac{(P_{li} - P_e) \cdot (D - t_1)}{2 \cdot f_y \cdot \alpha_U / (\gamma_m \cdot \gamma_{SC})}\]Iterative solution required.
Design pressure:
\[P_d = P_{inc} + \Delta P_{cont}\] \[P_{inc} = \gamma_{inc} \cdot P_{mop}\]| Symbol | Description |
|---|---|
| $P_{li}$ | Local incidental pressure |
| $P_e$ | External pressure |
| $f_y$ | Yield strength |
| $\alpha_U$ | Material strength factor (0.96) |
| $\gamma_{inc}$ | Incidental factor (1.1) |
Nominal Wall Thickness
After calculating $t_{min}$:
\[t_{nom} = \frac{t_{min} + t_{corr}}{f_{fab}}\]| Symbol | Description | Typical Value |
|---|---|---|
| $t_{corr}$ | Corrosion allowance | 3 mm |
| $f_{fab}$ | Fabrication tolerance | 0.875 (12.5%) |
Stress Analysis Formulas
Hoop Stress (Barlow’s Equation)
\[\sigma_h = \frac{P \cdot D}{2 \cdot t}\]or for internal diameter:
\[\sigma_h = \frac{P \cdot (D - 2t)}{2 \cdot t}\]Longitudinal Stress - Restrained Pipe
\[\sigma_L = \nu \cdot \sigma_h - E \cdot \alpha \cdot \Delta T + \sigma_{press}\]\(\sigma_{press} = \frac{P \cdot D}{4 \cdot t}\) (end-cap effect)
Longitudinal Stress - Unrestrained Pipe
\[\sigma_L = \frac{P \cdot D}{4 \cdot t}\]Von Mises Equivalent Stress
General form:
\[\sigma_{vm} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1\sigma_2 - \sigma_2\sigma_3 - \sigma_1\sigma_3 + 3(\tau_{12}^2 + \tau_{23}^2 + \tau_{13}^2)}\]For biaxial stress state (pipeline):
\[\sigma_{vm} = \sqrt{\sigma_h^2 + \sigma_L^2 - \sigma_h \cdot \sigma_L}\]Allowable Stress
\[\sigma_{allow} = \eta \cdot S_y\]| Code | $\eta$ |
|---|---|
| ASME B31.8 | 0.72-0.90 |
| DNV-OS-F101 | 0.87 |
Stress Utilization
\[U = \frac{\sigma_{vm}}{\sigma_{allow}}\]Design is safe when $U < 1.0$.
External Pressure and Buckling
External Pressure at Depth
\[P_e = \rho_{sw} \cdot g \cdot h\]Convert to MPa: $P_e = \frac{\rho_{sw} \cdot g \cdot h}{10^6}$
Elastic Collapse Pressure (Timoshenko)
\[P_{el} = \frac{2 \cdot E}{1 - \nu^2} \cdot \left(\frac{t}{D}\right)^3\]Plastic Collapse Pressure
\[P_p = 2 \cdot f_y \cdot \frac{t}{D}\]Combined Collapse Pressure (DNV)
Solving the quartic equation:
\[(P_c^2 - P_{el}^2)(P_c - P_p) = P_c \cdot P_{el} \cdot P_p \cdot f_o\]where $f_o$ is the ovality factor.
Simplified approximation:
\[P_c = \frac{P_{el} \cdot P_p}{\sqrt{P_{el}^2 + P_p^2}}\]Propagation Buckling Pressure
\[P_{pr} = 35 \cdot f_y \cdot \left(\frac{t}{D}\right)^{2.5}\]External Pressure Check
\[P_e \leq \frac{P_c}{\gamma_m \cdot \gamma_{SC}}\]If $P_e > P_{pr}$, buckle arrestors required.
Weight and Buoyancy Formulas
Cross-Sectional Areas
Steel cross-section:
\[A_{steel} = \frac{\pi}{4} \left[ D^2 - (D - 2t)^2 \right] = \pi \cdot t \cdot (D - t)\]Internal cross-section:
\[A_{int} = \frac{\pi}{4} (D - 2t)^2\]Coating cross-section:
\[A_{coat} = \frac{\pi}{4} \left[ (D + 2t_{coat})^2 - D^2 \right]\]Concrete cross-section:
\[A_{conc} = \frac{\pi}{4} \left[ (D + 2t_{coat} + 2t_{conc})^2 - (D + 2t_{coat})^2 \right]\]Weights per Unit Length
Steel weight:
\[w_{steel} = \rho_{steel} \cdot A_{steel}\]Coating weight:
\[w_{coat} = \rho_{coat} \cdot A_{coat}\]Concrete weight:
\[w_{conc} = \rho_{conc} \cdot A_{conc}\]Contents weight:
\[w_{cont} = \rho_{fluid} \cdot A_{int}\]Total dry weight:
\[w_{dry} = w_{steel} + w_{coat} + w_{conc}\]Displaced Volume per Unit Length
\[V_{disp} = \frac{\pi}{4} \cdot D_{total}^2\]where $D_{total} = D + 2t_{coat} + 2t_{conc}$
Submerged Weight
\[w_{sub} = w_{dry} + w_{cont} - \rho_{sw} \cdot g \cdot V_{disp}\]- $w_{sub} > 0$: Pipeline sinks
- $w_{sub} < 0$: Pipeline is buoyant
Required Concrete Thickness for Stability
Solve for $t_{conc}$:
\[w_{target} = w_{dry} + w_{cont} - \rho_{sw} \cdot g \cdot V_{disp}(t_{conc})\]Thermal Design Formulas
Thermal Expansion
Free expansion:
\[\Delta L = \alpha \cdot L \cdot \Delta T\]Restrained thermal stress:
\[\sigma_{thermal} = E \cdot \alpha \cdot \Delta T\]Overall Heat Transfer Coefficient
\[\frac{1}{U \cdot D_o} = \frac{1}{h_i \cdot D_i} + \sum_j \frac{\ln(D_{j+1}/D_j)}{2\pi k_j} + \frac{1}{h_o \cdot D_o}\]| Layer | Thermal conductivity $k$ (W/m·K) |
|---|---|
| Steel | 50 |
| 3LPE | 0.4 |
| PUF | 0.025 |
| Concrete | 1.5 |
Temperature Profile
\[T(x) = T_{ambient} + (T_{inlet} - T_{ambient}) \cdot e^{-\frac{U \cdot \pi \cdot D \cdot x}{\dot{m} \cdot c_p}}\]Required Insulation Thickness
Solve for $t_{ins}$:
\[T_{arrival} = T_{ambient} + (T_{inlet} - T_{ambient}) \cdot e^{-\frac{U(t_{ins}) \cdot \pi \cdot D \cdot L}{\dot{m} \cdot c_p}}\]Structural Design Formulas
Moment of Inertia
\[I = \frac{\pi}{64} \left[ D^4 - (D - 2t)^4 \right]\]Support Spacing (Deflection-Based)
Simply supported span:
\[L = \left( \frac{384 \cdot E \cdot I \cdot \delta_{max}}{5 \cdot w} \right)^{0.25}\]Fixed ends:
\[L = \left( \frac{384 \cdot E \cdot I \cdot \delta_{max}}{w} \right)^{0.25}\]| Symbol | Description |
|---|---|
| $\delta_{max}$ | Maximum allowable deflection |
| $w$ | Weight per unit length (N/m) |
Expansion Loop Length
U-loop:
\[L_{loop} = \sqrt{\frac{3 \cdot E \cdot D \cdot \Delta L}{\sigma_{allow}}}\]where $\Delta L = \alpha \cdot \Delta T \cdot L_{anchor}$
Z-loop: $L_{loop} = 1.2 \times$ U-loop result
Omega loop: $L_{loop} = 0.9 \times$ U-loop result
Minimum Bend Radius
Cold bend (API 5L):
\[R_{min} = 18 \cdot D\]Hot bend:
\[R_{min} = 5 \cdot D\]Induction bend:
\[R_{min} = 3 \cdot D\]Natural Frequency (Simply Supported)
\[f_n = \frac{\pi}{2L^2} \sqrt{\frac{E \cdot I}{m_e}}\]where $m_e$ = effective mass including added mass for subsea.
Vortex Shedding Frequency
\[f_s = \frac{St \cdot V}{D_{total}}\]Strouhal number $St \approx 0.2$ for cylinders.
VIV Avoidance Criterion
\[f_n > 1.3 \cdot f_s\]Fatigue Analysis
S-N Curve (DNV-RP-C203)
\[N = \frac{a}{S^m}\]| Curve | $a$ | $m$ | Application |
|---|---|---|---|
| B1 | $4.0 \times 10^{15}$ | 4.0 | Parent metal, good conditions |
| D | $10^{11.764}$ | 3.0 | Welded joints |
| E | $10^{11.610}$ | 3.0 | Butt welds |
| F | $10^{11.455}$ | 3.0 | Fillet welds |
| W3 | $10^{10.970}$ | 3.0 | Poor quality welds |
Fatigue Life
\[\text{Life} = \frac{N}{\text{cycles per year}}\]Miner’s Rule (Cumulative Damage)
\[D = \sum_i \frac{n_i}{N_i} \leq 1.0\]where:
- $n_i$ = number of cycles at stress range $S_i$
- $N_i$ = allowable cycles at stress range $S_i$
Cost Estimation Formulas
Material Cost
\[C_{steel} = w_{steel} \cdot L \cdot P_{steel}\] \[C_{coating} = A_{surface} \cdot L \cdot P_{coating}\]where $A_{surface} = \pi \cdot D$ (external surface area per meter)
Fabrication Cost
\[C_{welds} = N_{welds} \cdot P_{weld}\] \[N_{joints} = \frac{L}{L_{joint}} + 1\] \[N_{field welds} = N_{joints} - \frac{L}{L_{stalk}}\]Typical pipe joint length: $L_{joint} = 12.2$ m (40 ft)
Installation Cost
\[C_{install} = L \cdot R_{base} \cdot (1 + f_{depth})\]| Method | $R_{base}$ ($/m) | $f_{depth}$ |
|---|---|---|
| Onshore | 300 | $50 \times$ burial depth |
| S-lay | 800 | $2 \times$ water depth / 1000 |
| J-lay | 1200 | $3 \times$ water depth / 1000 |
| Reel-lay | 600 | $1.5 \times$ water depth / 1000 |
Accessories Cost
\[C_{flanges} = N_{flanges} \cdot P_{flange}(class, size)\] \[C_{valves} = N_{valves} \cdot P_{valve}(type, size)\]Total Project Cost
\[C_{direct} = C_{steel} + C_{coating} + C_{welds} + C_{install} + C_{accessories}\] \[C_{indirect} = C_{direct} \cdot (f_{eng} + f_{test} + f_{conting})\] \[C_{total} = C_{direct} + C_{indirect}\]| Factor | Typical Value |
|---|---|
| Engineering ($f_{eng}$) | 10% |
| Testing ($f_{test}$) | 5% |
| Contingency ($f_{conting}$) | 15% |
Labor Hours
\[H_{total} = H_{welding} + H_{coating} + H_{install} + H_{testing}\] \[H_{welding} = N_{welds} \cdot h_{weld}\]where $h_{weld}$ = hours per weld (typically 4-8 hours depending on diameter).
Unit Conversions
| From | To | Multiply by |
|---|---|---|
| bar | MPa | 0.1 |
| psi | MPa | 0.006895 |
| inch | m | 0.0254 |
| ft | m | 0.3048 |
| lb/ft | kg/m | 1.488 |
| $/ft | $/m | 3.281 |
References
- ASME B31.3 - Process Piping (2022)
- ASME B31.4 - Pipeline Transportation Systems for Liquids and Slurries (2022)
- ASME B31.8 - Gas Transmission and Distribution Piping Systems (2022)
- DNV-OS-F101 - Submarine Pipeline Systems (2021)
- DNV-RP-C203 - Fatigue Design of Offshore Steel Structures (2021)
- API 5L - Specification for Line Pipe (2018)
- ISO 13623 - Petroleum and Natural Gas Industries — Pipeline Transportation Systems (2017)
- Timoshenko, S.P. - Theory of Elastic Stability (1961)
- Palmer, A.C. & King, R.A. - Subsea Pipeline Engineering (2008)