Mathematical Reference
This document provides the mathematical foundations for the Risk Simulation Framework, including reliability theory, Monte Carlo methods, and risk calculations.
1. Reliability Theory
1.1 Failure Rate (Hazard Function)
The failure rate $\lambda(t)$ is the conditional probability of failure per unit time:
\[\lambda(t) = \lim_{\Delta t \to 0} \frac{P(t < T \leq t + \Delta t | T > t)}{\Delta t} = \frac{f(t)}{R(t)}\]For constant failure rate (exponential distribution):
\[\lambda(t) = \lambda \quad \text{(constant)}\]1.2 Reliability Function
The reliability function $R(t)$ is the probability of survival to time $t$:
\[R(t) = P(T > t) = e^{-\int_0^t \lambda(u) du}\]For constant failure rate:
\[R(t) = e^{-\lambda t}\]1.3 Mean Time To Failure (MTTF)
\[\text{MTTF} = E[T] = \int_0^\infty R(t) dt = \int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}\]1.4 Mean Time Between Failures (MTBF)
\[\text{MTBF} = \text{MTTF} + \text{MTTR}\]1.5 Availability
Steady-state availability:
\[A = \frac{\text{MTTF}}{\text{MTTF} + \text{MTTR}} = \frac{\text{Uptime}}{\text{Total Time}}\]Instantaneous availability (for repairable systems):
\[A(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}\]Where $\mu = 1/\text{MTTR}$ is the repair rate.
2. System Reliability
2.1 Series System
All components must function (AND logic):
┌───┐ ┌───┐ ┌───┐
│ A │───│ B │───│ C │
└───┘ └───┘ └───┘
Example: Three components with 99% availability each: \(A_s = 0.99^3 = 0.970\)
2.2 Parallel System (Active Redundancy)
System works if any component functions (OR logic):
┌───┐
┌───│ A │───┐
│ └───┘ │
│ ┌───┐ │
├───│ B │───┤
│ └───┘ │
└───────────┘
Example: Two components with 99% availability each: \(A_p = 1 - (1-0.99)^2 = 0.9999\)
2.3 k-out-of-n System
System works if at least $k$ of $n$ components function:
\[R_{k/n}(t) = \sum_{i=k}^n \binom{n}{i} R(t)^i (1-R(t))^{n-i}\]2-out-of-3 system: \(R_{2/3} = 3R^2(1-R) + R^3 = 3R^2 - 2R^3\)
3. Monte Carlo Simulation
3.1 Random Variate Generation
Exponential distribution (for failure/repair times):
\[T = -\frac{1}{\lambda} \ln(U), \quad U \sim \text{Uniform}(0,1)\]Weibull distribution (for wear-out failures):
\[T = \eta \cdot (-\ln(U))^{1/\beta}\]Where $\eta$ is scale parameter, $\beta$ is shape parameter.
3.2 Simulation Algorithm
For each iteration i = 1 to N:
t = 0
Initialize all equipment to OPERATING
production[i] = 0
While t < T_horizon:
# Generate next event
For each equipment j:
If operating: t_fail[j] = t + Exp(λ_j)
If failed: t_repair[j] = t + Exp(μ_j)
t_next = min(all event times)
# Advance time and update state
production[i] += P(state) × (t_next - t)
t = t_next
Update equipment states
Store production[i]
Calculate statistics from production[]
3.3 Confidence Intervals
For mean:
\[\bar{X} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}\]95% confidence interval ($z_{0.025} = 1.96$):
\[CI_{95\%} = \bar{X} \pm 1.96 \frac{s}{\sqrt{n}}\]3.4 Percentile Estimation
Order statistics method:
Sort $n$ samples: $X_{(1)} \leq X_{(2)} \leq … \leq X_{(n)}$
For percentile $p$: \(\hat{X}_p = X_{(\lceil np \rceil)}\)
P10, P50, P90:
- P10: 10th percentile (optimistic)
- P50: 50th percentile (median)
- P90: 90th percentile (conservative)
3.5 Convergence
Standard error of mean:
\[SE = \frac{\sigma}{\sqrt{n}}\]Required sample size for precision $\epsilon$:
\[n = \left(\frac{z_{\alpha/2} \cdot \sigma}{\epsilon}\right)^2\]4. Risk Calculations
4.1 Risk Score
\[\text{Risk Score} = P \times C\]Where:
- $P$ = Probability level (1-5)
- $C$ = Consequence level (1-5)
4.2 Annual Risk Cost
\[C_{\text{annual}} = \lambda \times C_{\text{event}}\]Where $C_{\text{event}}$ is the cost per failure event.
4.3 Event Cost Components
\[C_{\text{event}} = C_{\text{production}} + C_{\text{downtime}} + C_{\text{repair}}\]Production loss cost: \(C_{\text{production}} = \text{MTTR} \times \dot{m} \times \text{Loss\%} \times P_{\text{product}}\)
Where:
- $\dot{m}$ = mass flow rate (kg/hr)
- $P_{\text{product}}$ = product price ($/kg)
Downtime cost: \(C_{\text{downtime}} = \text{MTTR} \times C_{\text{fixed}}\)
4.4 Expected Annual Production Loss
\[E[\text{Loss}] = \sum_{i=1}^n \lambda_i \times \text{MTTR}_i \times L_i\]Where $L_i$ is the production loss fraction for equipment $i$.
4.5 Production Availability
\[A_{\text{production}} = 1 - \sum_{i=1}^n \frac{\lambda_i \times \text{MTTR}_i \times L_i}{8760}\]5. Production Impact
5.1 Production Loss Percentage
\[L\% = \frac{P_{\text{normal}} - P_{\text{degraded}}}{P_{\text{normal}}} \times 100\%\]5.2 Capacity Factor Effect
When equipment operates at reduced capacity $C_f$:
\[P_{\text{degraded}} = P_{\text{normal}} \times f(C_f)\]For simple proportional relationship: \(f(C_f) = C_f\)
For non-linear (e.g., compressor at reduced speed): \(f(C_f) = C_f^\alpha, \quad \alpha > 1\)
5.3 Criticality Index
\[CI_i = \frac{L_i}{\max_j(L_j)}\]Equipment with $CI > 0.8$ is “critical”.
6. Dependency Analysis
6.1 Cascade Effect Propagation
For equipment $j$ downstream of failed equipment $i$:
\[L_j = L_i \times T_{ij}\]Where $T_{ij}$ is the transmission factor (0-1).
6.2 Criticality Increase
When equipment $i$ fails, criticality of parallel equipment $j$ increases:
\[CI_j^{\text{new}} = CI_j^{\text{base}} \times \frac{n}{n - 1}\]Where $n$ is the number of parallel trains.
6.3 Cross-Installation Impact
\[L_{\text{target}} = L_{\text{source}} \times \text{Impact Factor}\]7. Probability Distributions
7.1 Exponential Distribution
PDF: $f(t) = \lambda e^{-\lambda t}$
CDF: $F(t) = 1 - e^{-\lambda t}$
Mean: $E[T] = 1/\lambda$
Variance: $\text{Var}[T] = 1/\lambda^2$
7.2 Weibull Distribution
PDF: $f(t) = \frac{\beta}{\eta}\left(\frac{t}{\eta}\right)^{\beta-1} e^{-(t/\eta)^\beta}$
Mean: $E[T] = \eta \cdot \Gamma(1 + 1/\beta)$
Special cases:
- $\beta = 1$: Exponential (constant failure rate)
- $\beta < 1$: Decreasing failure rate (infant mortality)
- $\beta > 1$: Increasing failure rate (wear-out)
7.3 Log-Normal Distribution
For repair times:
PDF: $f(t) = \frac{1}{t\sigma\sqrt{2\pi}} e^{-\frac{(\ln t - \mu)^2}{2\sigma^2}}$
Mean: $E[T] = e^{\mu + \sigma^2/2}$
8. Statistical Formulas
8.1 Sample Mean
\[\bar{X} = \frac{1}{n}\sum_{i=1}^n X_i\]8.2 Sample Variance
\[s^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2\]8.3 Coefficient of Variation
\[CV = \frac{s}{\bar{X}} \times 100\%\]8.4 Binomial Coefficient
\[\binom{n}{k} = \frac{n!}{k!(n-k)!}\]9. Numerical Methods
9.1 Newton-Raphson (for optimization)
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]9.2 Trapezoidal Integration
\[\int_a^b f(x)dx \approx \frac{h}{2}\sum_{i=1}^{n-1}(f(x_i) + f(x_{i+1}))\]9.3 Linear Interpolation (for percentiles)
\[X_p = X_k + (p \cdot n - k)(X_{k+1} - X_k)\]10. Unit Conversions
| From | To | Factor |
|---|---|---|
| hours | years | ÷ 8760 |
| failures/year | failures/hour | ÷ 8760 |
| kg/hr | tonnes/day | × 0.024 |
| bara | psia | × 14.5038 |
| °C | K | + 273.15 |