Skip to the content.

Pure Component Parameters Database (COMP)

This guide provides detailed documentation of the COMP database, which stores pure component parameters used by NeqSim’s thermodynamic models. Understanding these parameters is essential for model selection, debugging, and extending NeqSim with new components.

Table of Contents


Database Overview

The COMP table is the primary pure component property database in NeqSim. It contains over 150 parameters per component, organized into functional groups that support different thermodynamic models and property calculations.

Key characteristics:


Database Location and Format

Item Value
File Path src/main/resources/data/COMP.csv
Runtime Path data/COMP.csv (in JAR)
Format CSV with header row
Encoding UTF-8
Primary Key ID (integer)
Lookup Key NAME (string, case-sensitive)

Parameter Categories

Basic Properties

Column Description Unit Model Usage
ID Unique component identifier - Internal indexing
NAME Component name for lookup - addComponent("methane", ...)
CASnumber CAS Registry Number - Component identification
COMPTYPE Component type classification - Model selection (see Component Types)
COMPINDEX Component index in database - Internal ordering
FORMULA Chemical formula - Element calculations
MOLARMASS Molar mass g/mol All models (stored internally as kg/mol)

Critical Properties

These parameters are fundamental to all cubic equations of state (SRK, PR, etc.).

Column Description Unit Model Usage
TC Critical temperature °C Converted to K internally: $T_c = T_{C,db} + 273.15$
PC Critical pressure bara SRK, PR, CPA EoS parameter a and b
ACSFACT Acentric factor (ω) - Alpha function: $m = f(\omega)$
CRITVOL Critical molar volume cm³/mol Critical compressibility: $Z_c = \frac{P_c V_c}{R T_c}$
NORMBOIL Normal boiling point °C Stored as K internally

Model linkage:

Vapor Pressure Parameters

Parameters for Antoine-type vapor pressure correlations.

Column Description Unit Model Usage
AntoineVapPresLiqType Equation type - pow10, log, exp, loglog
ANTOINEA Antoine A coefficient - Vapor pressure calculation
ANTOINEB Antoine B coefficient - Vapor pressure calculation
ANTOINEC Antoine C coefficient - Vapor pressure calculation
ANTOINED Antoine D coefficient - Extended Antoine
ANTOINEE Antoine E coefficient - Extended Antoine
ANTOINESolidA Solid vapor pressure A - Sublimation pressure
ANTOINESolidB Solid vapor pressure B - Sublimation pressure
ANTOINESolidC Solid vapor pressure C - Sublimation pressure

Antoine equation forms:

Ideal Gas Heat Capacity

Polynomial coefficients for ideal gas heat capacity: $C_p^{ig} = A + BT + CT^2 + DT^3 + ET^4$

Column Description Unit
CPA Coefficient A J/(mol·K)
CPB Coefficient B J/(mol·K²)
CPC Coefficient C J/(mol·K³)
CPD Coefficient D J/(mol·K⁴)
CPE Coefficient E J/(mol·K⁵)
CPsolid1-5 Solid phase Cp coefficients J/(mol·K)
CPliquid1-5 Liquid phase Cp coefficients J/(mol·K)

Usage: Enthalpy, entropy, and Gibbs energy departure functions for all EoS models.

Liquid Phase Properties

Column Description Unit Model Usage
LIQDENS Liquid density at standard conditions g/cm³ Density correlations
RACKETZ Rackett compressibility factor - Rackett liquid density: $V = V_c Z_{RA}^{[1+(1-T_r)^{2/7}]}$
racketZCPA Rackett Z for CPA model - CPA volume correction
volcorrSRK_T SRK volume translation - Péneloux correction: $V_{corr} = V_{EoS} - c$
volcorrCPA_T CPA volume translation - CPA Péneloux correction
STDDENS Standard density g/cm³ Reference conditions
LIQUIDDENSITYCOEFS1-5 Liquid density correlation coefficients - Temperature-dependent density

Transport Properties

Column Description Unit Model Usage
DIPOLEMOMENT Dipole moment Debye Polar corrections
VISCFACT Viscosity correction factor - Corresponding states
LIQVISCMODEL Liquid viscosity model type - Model selection (1-4)
LIQVISC1-4 Liquid viscosity parameters - Andrade equation: $\ln(\eta) = A + B/T + C\ln(T) + DT$
LIQUIDCONDUCTIVITY1-3 Liquid thermal conductivity - $k = A + BT + CT^2$
PARACHOR Parachor - Surface tension: $\sigma^{1/4} = P[\rho_L - \rho_V]$
PARACHOR_CPA Parachor for CPA model - CPA surface tension
criticalViscosity Critical viscosity Pa·s Transport correlations

Equation of State Parameters

Attractive Term Parameters

Column Description Unit Model Usage
PVMODEL PV model type - Classic for standard EoS
MC1, MC2, MC3 Mathias-Copeman parameters (SRK) - Enhanced alpha function
MCPR1, MCPR2, MCPR3 Mathias-Copeman parameters (PR) - PR alpha function
TwuCoon1-3 Twu-Coon alpha function parameters - Twu-Coon attractive term
SCHWARTZENTRUBER1-3 Schwartzentruber parameters - Schwartzentruber EoS
MC1Solid-MC3Solid Solid phase Mathias-Copeman - Solid fugacity

Mathias-Copeman alpha function: \(\alpha = [1 + c_1(1-\sqrt{T_r}) + c_2(1-\sqrt{T_r})^2 + c_3(1-\sqrt{T_r})^3]^2\)

Lennard-Jones Parameters

Column Description Unit Model Usage
LJDIAMETER LJ molecular diameter Å Gas viscosity, diffusion
LJEPS LJ energy parameter K ε/k_B
SphericalCoreRadius Hard-core radius - LJ potential
LJDIAMETERHYDRATE LJ diameter for hydrates Å Hydrate equilibrium
LJEPSHYDRATE LJ energy for hydrates K Hydrate cage interaction

Association Parameters (CPA/SAFT)

Parameters for Cubic-Plus-Association (CPA) and PC-SAFT models.

Column Description Unit Model Usage
associationsites Number of association sites - 0, 1, 2, 3, or 4
associationscheme Association scheme - 0, 1A, 2A, 2B, 3B, 4C
associationenergy Association energy (ε^AB) J/mol CPA association term
associationboundingvolume_SRK Association volume (β) for SRK-CPA - SRK-CPA
associationboundingvolume_PR Association volume (β) for PR-CPA - PR-CPA
aCPA_SRK CPA a parameter (SRK base) Pa·m⁶/mol² SRK-CPA
bCPA_SRK CPA b parameter (SRK base) m³/mol SRK-CPA
mCPA_SRK CPA m parameter (SRK base) - SRK-CPA
aCPA_PR CPA a parameter (PR base) Pa·m⁶/mol² PR-CPA
bCPA_PR CPA b parameter (PR base) m³/mol PR-CPA
mCPA_PR CPA m parameter (PR base) - PR-CPA

PC-SAFT Parameters

Column Description Unit Model Usage
mSAFT Number of segments - Chain length
sigmaSAFT Segment diameter Å Hard-sphere term
epsikSAFT Segment energy K ε/k_B
associationboundingvolume_PCSAFT Association volume - PC-SAFT association
associationenergy_PCSAFT Association energy K PC-SAFT association

Association schemes: | Scheme | Sites | Example Molecules | |——–|——-|——————-| | 0 | 0 | Non-associating (hydrocarbons) | | 1A | 1 | HCl, aromatic compounds | | 2A | 2 | CO₂ (electron donor/acceptor) | | 2B | 2 | Alcohols (1 proton donor, 1 acceptor) | | 3B | 3 | Amines | | 4C | 4 | Water, glycols (2 donors, 2 acceptors) |

Hydrate Parameters

Parameters for gas hydrate equilibrium calculations.

Column Description Unit Model Usage
HydrateFormer Hydrate-forming capability - yes or no
HydrateA1Small, HydrateB1Small Type I small cage (512) - Langmuir constants
HydrateA1Large, HydrateB1Large Type I large cage (51262) - Langmuir constants
HydrateA2Small, HydrateB2Small Type II small cage (512) - Langmuir constants
HydrateA2Large, HydrateB2Large Type II large cage (51264) - Langmuir constants
A1_smallGF-B2_largeGF Graffis parameters - Alternative parameterization
SphericalCoreRadiusHYDRATE Core radius for hydrates - Cavity occupation

Thermodynamic Reference Data

Column Description Unit Model Usage
Href Reference enthalpy J/mol Enthalpy calculations
GIBBSENERGYOFFORMATION Gibbs energy of formation J/mol Chemical equilibrium
ENTHALPYOFFORMATION Standard enthalpy of formation J/mol Reaction thermodynamics
ABSOLUTEENTROPY Absolute entropy J/(mol·K) Entropy calculations
HEATOFFUSION Heat of fusion J/mol Solid-liquid equilibrium
Hsub Heat of sublimation J/mol Solid-vapor equilibrium
TRIPLEPOINTTEMPERATURE Triple point temperature K Phase boundaries
TRIPLEPOINTPRESSURE Triple point pressure bar Phase boundaries
TRIPLEPOINTDENSITY Triple point density kg/m³ Reference state
MELTINGPOINTTEMPERATURE Melting point K Solid calculations

Ionic and Electrolyte Parameters

Column Description Unit Model Usage
IONICCHARGE Ionic charge - Electrolyte models
REFERENCESTATETYPE Reference state - solvent or solute
DIELECTRICPARAMETER1-5 Dielectric parameters - Electrolyte activity
DeshMatIonicDiameter Debye-Hückel diameter Å Electrolyte models
calcActivity Activity calculation flag - 0 or 1

Henry’s Law Parameters

Column Description Unit
HenryCoef1 Henry constant A -
HenryCoef2 Henry constant B -
HenryCoef3 Henry constant C -
HenryCoef4 Henry constant D -

Henry’s law correlation: \(\ln(H) = A + \frac{B}{T} + C\ln(T) + DT\)

Solid Phase Parameters

Column Description Unit
SOLIDDENSITYCOEFS1-5 Solid density coefficients -
HEATOFVAPORIZATIONCOEFS1-5 Heat of vaporization coefficients -
waxformer Wax-forming component -

Parameter Reference Table

Complete parameter list with units and typical values:

Parameter Unit Example (methane) Example (water)
MOLARMASS g/mol 16.043 18.015
TC °C -82.59 374.15
PC bara 45.99 220.89
ACSFACT - 0.0115 0.344
CRITVOL cm³/mol 99.0 56.0
NORMBOIL °C -161.55 100.0
LIQDENS g/cm³ 0.422 0.999
RACKETZ - 0.0 0.0
DIPOLEMOMENT Debye 0.0 1.8
associationsites - 0 4
HydrateFormer - yes no

How Parameters Feed into Models

┌─────────────────────────────────────────────────────────────────┐
│                      COMP Database                              │
├─────────────────────────────────────────────────────────────────┤
│  TC, PC, ACSFACT  ──────────────> Cubic EoS (SRK, PR)          │
│  MC1, MC2, MC3    ──────────────> Mathias-Copeman α(T)         │
│  TwuCoon1-3       ──────────────> Twu-Coon α(T)                │
│  aCPA, bCPA, mCPA ──────────────> CPA EoS                      │
│  associationsites ──────────────> CPA/SAFT Association         │
│  mSAFT, σSAFT, εSAFT ──────────> PC-SAFT                       │
│  UNIFAC groups    ──────────────> Activity models              │
│  LJDIAMETER, LJEPS ─────────────> Transport properties         │
│  HydrateA/B params ─────────────> Hydrate equilibrium          │
│  CPA, CPB, CPC... ──────────────> Enthalpy/Entropy             │
│  ANTOINEA-E       ──────────────> Vapor pressure               │
└─────────────────────────────────────────────────────────────────┘

Model-Parameter Mapping

Model Class Key Parameters
SystemSrkEos TC, PC, ACSFACT, MC1-3, RACKETZ
SystemPrEos TC, PC, ACSFACT, MCPR1-3
SystemSrkCPA aCPA_SRK, bCPA_SRK, mCPA_SRK, associationsites, associationenergy, associationboundingvolume_SRK
SystemPrCPA aCPA_PR, bCPA_PR, mCPA_PR, associationboundingvolume_PR
SystemPCSAFT mSAFT, sigmaSAFT, epsikSAFT, associationboundingvolume_PCSAFT
SystemGERG2008Eos Uses internal GERG parameters, but TC/PC for initialization
SystemUNIFAC TC, PC (for vapor), UNIFAC groups from UNIFACcomp table

Component Types

The COMPTYPE field classifies components for model selection:

Type Description Examples
HC Hydrocarbon methane, ethane, propane, benzene
inert Inert gas nitrogen, CO2, oxygen, argon
ion Ionic species Na+, Cl-, HCO3-, Ca++
amine Amine compounds MDEA, MEA, DEA
alcohol Alcohols methanol, ethanol
glycol Glycol compounds MEG, DEG, TEG
ice Ice/solid water ice
TBP TBP pseudo-component Generated from characterization
plus Plus fraction C7+, C10+, etc.

Accessing Parameters in Code

Reading Component Properties

// Create a system and access component properties
SystemInterface fluid = new SystemSrkEos(298.15, 10.0);
fluid.addComponent("methane", 1.0);
fluid.init(0);

// Access pure component parameters
ComponentInterface comp = fluid.getPhase(0).getComponent("methane");
double Tc = comp.getTC();           // Critical temperature [K]
double Pc = comp.getPC();           // Critical pressure [bara]
double omega = comp.getAcentricFactor();  // Acentric factor [-]
double Mw = comp.getMolarMass();    // Molar mass [kg/mol]
double Tb = comp.getNormalBoilingPoint(); // Normal boiling point [K]

System.out.println("Methane Tc = " + Tc + " K");
System.out.println("Methane Pc = " + Pc + " bara");
System.out.println("Methane ω = " + omega);

Modifying Component Properties

// Modify properties for sensitivity analysis
comp.setTC(190.6);  // Set new Tc in Kelvin
comp.setPC(46.0);   // Set new Pc in bara
comp.setAcentricFactor(0.012);

// Re-initialize to apply changes
fluid.init(0);

Adding Custom Components

Method 1: Database Modification

Add a new row to COMP.csv with all required parameters.

Method 2: Runtime Addition

// Add a pseudo-component with custom properties
SystemInterface fluid = new SystemSrkEos(298.15, 50.0);

// Add TBP fraction with molar mass and density
fluid.addTBPfraction("C7_custom", 0.1, 95.0, 0.72);  // name, moles, MW, SG

// Or add component and modify properties
fluid.addComponent("n-heptane", 1.0);
ComponentInterface comp = fluid.getPhase(0).getComponent("n-heptane");
comp.setTC(540.0);
comp.setPC(27.4);
comp.setAcentricFactor(0.35);

// Initialize database for binary parameters
fluid.createDatabase(true);
fluid.setMixingRule(2);

Method 3: Temporary Tables

// Enable temporary tables for session-specific components
NeqSimDataBase.setCreateTemporaryTables(true);

// Components added to "comptemp" table
fluid.getPhase(0).getComponent(0).insertComponentIntoDatabase("comptemp");

// Remember to disable after use
NeqSimDataBase.setCreateTemporaryTables(false);

The COMP table works with several related tables:

Table Purpose Key Columns
INTER Binary interaction parameters (kij) comp1, comp2, kij, model
UNIFACcomp UNIFAC group assignments compname, group, count
UNIFACGroupParam UNIFAC group parameters groupid, R, Q
UNIFACInterParam* UNIFAC group interaction parameters group1, group2, aij
MBWR32param MBWR equation parameters comp, coefficients
AdsorptionParameters Adsorption isotherm parameters comp, adsorbent, params

See Also


References

  1. Soave, G. (1972). Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27(6), 1197-1203.
  2. Peng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
  3. Kontogeorgis, G. M., et al. (1999). An equation of state for associating fluids. Industrial & Engineering Chemistry Research, 38(10), 4073-4082.
  4. Gross, J., & Sadowski, G. (2001). Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 40(4), 1244-1260.