Skip to the content.

Beggs & Brill Correlation for Multiphase Pipe Flow

Overview

The Beggs & Brill correlation (1973) is a widely-used empirical method for predicting pressure drop and liquid holdup in multiphase pipe flow. It handles:

Theory

Total Pressure Gradient

The total pressure gradient consists of three components:

\[\frac{dP}{dL} = \frac{dP}{dL}_{friction} + \frac{dP}{dL}_{hydrostatic} + \frac{dP}{dL}_{acceleration}\]

In NeqSim, the acceleration term is typically neglected (small for steady flow), so:

\[\Delta P = \Delta P_{friction} + \Delta P_{hydrostatic}\]

Flow Regime Determination

The correlation identifies four flow regimes based on dimensionless parameters:

Flow Regime Description Typical Conditions
Segregated Stratified or wavy flow Low velocities, horizontal
Intermittent Slug or plug flow Moderate velocities
Distributed Bubble or mist flow High velocities
Transition Between segregated and intermittent Transitional

Flow regime is determined by:

Where:

Liquid Holdup Calculation

Liquid holdup ($H_L$ or $E_L$) is the fraction of pipe cross-section occupied by liquid:

\[H_L = H_L(0) \cdot \psi\]

Where:

Horizontal holdup correlations:

Regime Correlation
Segregated $H_L(0) = \frac{0.98 \lambda_L^{0.4846}}{Fr^{0.0868}}$
Intermittent $H_L(0) = \frac{0.845 \lambda_L^{0.5351}}{Fr^{0.0173}}$
Distributed $H_L(0) = \frac{1.065 \lambda_L^{0.5824}}{Fr^{0.0609}}$

Friction Pressure Loss

\[\Delta P_{friction} = \frac{f_{tp} \cdot \rho_{ns} \cdot v_m^2 \cdot L}{2D}\]

Where:

Hydrostatic Pressure Drop

\[\Delta P_{hydrostatic} = \rho_m \cdot g \cdot \Delta h\]

Where:

Usage in NeqSim

Basic Configuration

PipeBeggsAndBrills pipe = new PipeBeggsAndBrills("flowline", inletStream);

// Geometry
pipe.setLength(1000);              // meters
pipe.setDiameter(0.1);             // meters
pipe.setElevation(100);            // meters (positive = uphill)
pipe.setAngle(5.7);                // degrees (alternative to elevation)
pipe.setPipeWallRoughness(4.6e-5); // meters (steel ≈ 0.046 mm)

// Numerical settings
pipe.setNumberOfIncrements(20);    // segments for integration

pipe.run();

Accessing Results

// Overall results
double pressureDrop = pipe.getInletPressure() - pipe.getOutletPressure();
double outletTemp = pipe.getOutletTemperature();

// Flow regime
PipeBeggsAndBrills.FlowRegime regime = pipe.getFlowRegime();
// Returns: SEGREGATED, INTERMITTENT, DISTRIBUTED, TRANSITION, or SINGLE_PHASE

// Profile data (for segment i)
double holdup = pipe.getSegmentLiquidHoldup(i);
double mixtureDensity = pipe.getSegmentMixtureDensity(i);
double velocity = pipe.getSegmentMixtureSuperficialVelocity(i);

// Full profiles
List<Double> pressureProfile = pipe.getPressureProfile();
List<Double> temperatureProfile = pipe.getTemperatureProfile();

Heat Transfer Options

// Adiabatic (default)
pipe.setRunAdiabatic(true);

// With heat transfer
pipe.setRunAdiabatic(false);
pipe.setConstantSurfaceTemperature(283.15);  // 10°C ambient
pipe.setHeatTransferCoefficient(10.0);       // W/m²K
// Or let it estimate:
pipe.setHeatTransferCoefficientMethod("Estimated");

Three-Phase Flow (Gas-Oil-Water)

For three-phase systems, the liquid phase properties are calculated as volume-weighted averages:

SystemInterface fluid = new SystemSrkEos(333.15, 30.0);
fluid.addComponent("methane", 3000, "kg/hr");
fluid.addComponent("nC10", 40000, "kg/hr");
fluid.addComponent("water", 20000, "kg/hr");
fluid.setMixingRule("classic");
fluid.setMultiPhaseCheck(true);  // Enable water phase

Stream feed = new Stream("feed", fluid);
feed.run();

PipeBeggsAndBrills pipe = new PipeBeggsAndBrills("pipe", feed);
// ... configure and run

Limitations

  1. Developed for oil & gas: Correlations based on oil/gas/water systems
  2. Pipe diameter range: Validated for 1-12 inch pipes
  3. Pressure range: Best for moderate pressures (1-100 bara)
  4. Inclination: Valid for -90° to +90° (horizontal to vertical)
  5. Viscosity: May underpredict for very high viscosity fluids
  6. Flow patterns: Simplified flow regime map; real systems may differ

Validation

NeqSim’s implementation has been validated against:

Test Case Reference Deviation
Single-phase gas (turbulent) Darcy-Weisbach +0.5%
Single-phase liquid (turbulent) Darcy-Weisbach -1.4%
Single-phase liquid (laminar) Darcy-Weisbach 0.0%
Two-phase horizontal Dukler, Homogeneous Reasonable
Inclined pipes Steady-state physics Validated

References

  1. Beggs, H.D. and Brill, J.P. (1973). “A Study of Two-Phase Flow in Inclined Pipes”. Journal of Petroleum Technology, 25(5), 607-617.

  2. Brill, J.P. and Mukherjee, H. (1999). Multiphase Flow in Wells. SPE Monograph Series.

  3. Shoham, O. (2006). Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes. SPE Books.

See Also