Uses of Class
neqsim.process.ml.RLEnvironment
Packages that use RLEnvironment
Package
Description
Machine Learning and AI integration for NeqSim.
Example RL environments demonstrating NeqSim ML integration.
AI-friendly validation framework for NeqSim.
-
Uses of RLEnvironment in neqsim.process.ml
Methods in neqsim.process.ml that return RLEnvironmentModifier and TypeMethodDescriptionRLEnvironment.addConstraint(String name, String variableName, double minValue, double maxValue, String unit) Add a hard constraint.RLEnvironment.defineAction(String name, double lowerBound, double upperBound, String unit) Define an action dimension.RLEnvironment.setMaxEpisodeTime(double maxTime) Set maximum episode time.RLEnvironment.setRewardWeights(double energy, double setpointError, double constraintViolation, double throughput) Set reward weights.RLEnvironment.setTimeStep(double dt) Set simulation time step. -
Uses of RLEnvironment in neqsim.process.ml.examples
Subclasses of RLEnvironment in neqsim.process.ml.examplesModifier and TypeClassDescriptionclassExample RL environment for separator level control. -
Uses of RLEnvironment in neqsim.util.validation
Methods in neqsim.util.validation that return RLEnvironmentModifier and TypeMethodDescriptionAIIntegrationHelper.createRLEnvironment()Create an RL environment for the process.