Class BadDataFinder
For dynamic model identification in system identification, bad data points will create "spurious dynamics"
that it is especially important to filter out, otherwise it may
destory identification of dynamic terms.
Inheritance
BadDataFinder
Assembly: TimeSeriesAnalysis.dll
Syntax
public static class BadDataFinder
Methods
|
Edit this page
View Source
GetAllBadIndices(double[], double)
Get all the values which are NaN or equal to the badValueIndicatingValue for a single vector/array
Declaration
public static List<int> GetAllBadIndices(double[] inData, double badValueIndicatingValue)
Parameters
Type |
Name |
Description |
double[] |
inData |
|
double |
badValueIndicatingValue |
|
Returns
|
Edit this page
View Source
GetAllBadIndices(TimeSeriesDataSet, double)
Get all the values which are NaN or equal to the badValueIndicatingValue for any and all datapoints in an entire
TimeSeriesDataSet
Declaration
public static List<int> GetAllBadIndices(TimeSeriesDataSet inputData, double badValueIndicatingValue)
Parameters
Returns
|
Edit this page
View Source
GetAllBadIndicesPlussNext(double[], double)
Get the bad value indices AND the indices trailing them.
This is useful when considering difference equations that require the values both at index k
and k-1
to
perform identification.
Declaration
public static List<int> GetAllBadIndicesPlussNext(double[] inData, double badValueIndicatingValue)
Parameters
Type |
Name |
Description |
double[] |
inData |
|
double |
badValueIndicatingValue |
|
Returns