flownet.utils.kriging module
- flownet.utils.kriging.execute(data: numpy.ndarray, n: int = 20, variogram_model: str = 'spherical', variogram_parameters: Optional[Dict] = None, n_lags: int = 6, anisotropy_scaling_z: float = 10.0, **kwargs) Tuple[scipy.interpolate.interpolate.RegularGridInterpolator, scipy.interpolate.interpolate.RegularGridInterpolator]
Executes spatial kriging of input data and returns an scipy.interpolate.RegularInterpolator object.
- Parameters
data – 3xN np.ndarray with columns X, Y, Z, MEASUREMENT
n – Number of kriged values in each direct. E.g, n = 10 -> 10x10x10 = 1000 values
variogram_model – Variogram options as allowed in pykrige
nlags – nlag as defined in pykrige
anisotropy_scaling_z – anisotropy in the z-scale
... –
- Returns
Tuple of RegularInterpolators for the kriged measurement and uncertainty in a 3D volume