Package neqsim.process.ml.surrogate
package neqsim.process.ml.surrogate
Surrogate models and physics constraint validation for AI/ML integration.
This package provides infrastructure for hybrid physics-ML systems:
- Surrogate Registry: Cache and manage trained ML models
- Physics Validation: Verify AI actions against physical constraints
- Fallback Support: Automatic fallback to rigorous physics
Design Principles:
- Physics First: ML augments, never replaces, thermodynamic rigor
- Safety by Design: Constraints enforced before action execution
- Explainability: All decisions traceable to physical constraints
Usage Pattern:
// Register surrogate
SurrogateModelRegistry.getInstance().register("flash-model", myNeuralNet);
// Use with physics fallback
double[] result = registry.predictWithFallback("flash-model", input, physicsModel::calculate);
// Validate AI actions
PhysicsConstraintValidator validator = new PhysicsConstraintValidator(process);
ValidationResult check = validator.validate(proposedAction);
if (!check.isValid()) {
System.out.println("Rejected: " + check.getRejectionReason());
}
- Version:
- 1.0
- Author:
- ESOL
- See Also:
-
ClassDescriptionValidates AI-proposed actions against physics constraints.Base interface for constraints.Internal result of checking a single constraint.Details of a constraint violation.Constraint on specific equipment.Constraint on physical bounds (e.g., positive temperature).Result of a validation check.Registry for managing trained surrogate (machine learning) models.Metadata for a surrogate model.Interface for surrogate model implementations.Internal entry combining model and metadata.