Class UnitModel
- Namespace
- TimeSeriesAnalysis.Dynamic
- Assembly
- TimeSeriesAnalysis.dll
Simulatable "default" process model.
This is a model that can be either dynamic or static, have one or multiple inputs and can be either linear in inputs or have inputs nonlinearity described by a second-order polynominal. Dynamics can be either 1. order time-constant, time-delay or both. The model also supports "additive" signals added to its output (intended for modeling disturbances).
The model is designed to lend itself well to identification from industrial time-series datasets, and is supported by the accompanying identification method UnitIdentifier.
This model is also intended to be co-simulated with PidModel by PlantSimulator to study process control feedback loops.
It is assumed that most unit processes in industrial process control systems can be described sufficiently by this model, and thus that larger plants can be modeled by connecting unit models based on this model structure.
It would be possible to extend this model to also describe second-order dynamics along the same principles by the introduction of one additional parameter in future work.
See also: UnitParameterspublic class UnitModel : ModelBaseClass, ISimulatableModel
- Inheritance
-
UnitModel
- Implements
- Inherited Members
Constructors
UnitModel()
Empty constructor
public UnitModel()
UnitModel(UnitParameters, string)
Constructor
[JsonConstructor]
public UnitModel(UnitParameters modelParameters, string ID = "not_named")
Parameters
modelParametersUnitParametersmodel parameter object
IDstringa unique string that identifies this model in larger process models
UnitModel(UnitParameters, UnitDataSet, string)
Initalizer of model that for the given dataSet also creates the resulting y_sim.
public UnitModel(UnitParameters modelParameters, UnitDataSet dataSet, string ID = "not_named")
Parameters
modelParametersUnitParametersdataSetUnitDataSetIDstringa unique string that identifies this model in larger process models
Fields
modelParameters
The parameters of the UnitModel.
public UnitParameters modelParameters
Field Value
Methods
Clone(string)
Create a deep copy of itself
public ISimulatableModel Clone(string IDexternal = null)
Parameters
IDexternalstring
Returns
- ISimulatableModel
deep copy
GetFittedDataSet()
Returns a copy of the dataset against which the model was fitted.
public UnitDataSet GetFittedDataSet()
Returns
GetLengthOfInputVector()
Returns the number of external inputs U of the model. Note that this model may have a disturbance signal added to the output in addition to the other signals.
public override int GetLengthOfInputVector()
Returns
GetModelParameters()
Get the object of model parameters contained in the model.
public UnitParameters GetModelParameters()
Returns
- UnitParameters
Model parameter object
GetOutputSignalType()
Get the type of output signal.
public override SignalType GetOutputSignalType()
Returns
GetSteadyStateInput(double, int, double[])
Calcuate the steady-state input if the output and all-but-one input are known.
public double? GetSteadyStateInput(double x0, int inputIdx = 0, double[] givenInputs = null)
Parameters
x0doubleIf no additive inputs y=x, otherwise subtract additive inputs from y to get x
inputIdxintgivenInputsdouble[]
Returns
GetSteadyStateOutput(double[], double)
Get the steady state output y for a given input (including additive terms).
public double? GetSteadyStateOutput(double[] u, double badDataID = -9999)
Parameters
Returns
InitSim(UnitParameters)
Initalize the process model with a sampling time.
public void InitSim(UnitParameters modelParameters)
Parameters
modelParametersUnitParametersmodel parameters object
IsModelSimulatable(out string)
Answers if the model can be simulated with the inputs provided.
public bool IsModelSimulatable(out string explainStr)
Parameters
explainStrstringa string that explains why the model cannot be simulated if that is the case
Returns
IsModelStatic()
Is the model static or dynamic?
public bool IsModelStatic()
Returns
- bool
Returns true if the model is static(no time constant or time delay terms),otherwise false.
Iterate(double[], double, double)
Iterates the process model state one time step, based on the inputs given.
public double[] Iterate(double[] inputs, double timeBase_s, double badValueIndicator = -9999)
Parameters
inputsdouble[]vector of inputs U. Optionally the output disturbance D can be added as the last value.
timeBase_sdoublethe time in seconds between samples
badValueIndicatordoublevalue in U that is to be treated as NaN
Returns
- double[]
the updated process model state (x) - the output without any output noise or disturbance. NaN is returned if model was not able to be identfied, or if no good U values have been given yet. If some data points in U inputs are NaN or equal to
badValueIndicator, the last good value is returned
RemoveAdditiveInputs()
Removes the addtive inputs.
public void RemoveAdditiveInputs()
SetFittedDataSet(UnitDataSet)
Store the fitted dataset.
public void SetFittedDataSet(UnitDataSet dataset)
Parameters
datasetUnitDataSet
SetModelParameters(UnitParameters)
Update the parameter object of the model.
public void SetModelParameters(UnitParameters parameters)
Parameters
parametersUnitParameters
ToString()
Create a nice human-readable summary of all the important data contained in the model object. This is especially useful for unit-testing and development.
public override string ToString()
Returns
WarmStart(double[], double)
Warm-starting.
public void WarmStart(double[] inputs = null, double output = 0)