Class UnitParameters
- Namespace
- TimeSeriesAnalysis.Dynamic
- Assembly
- TimeSeriesAnalysis.dll
Parameters data class of the UnitModel.
public class UnitParameters : ModelParametersBaseClass
- Inheritance
-
UnitParameters
- Inherited Members
Constructors
UnitParameters()
Default constructor.
public UnitParameters()
Fields
FittingSpecs
User-specified inputs to model fitting process such as minima,maxima and working point
public FittingSpecs FittingSpecs
Field Value
Y_max
the maximum allowed output value(if set to NaN, no maximum is applied)
public double Y_max
Field Value
Y_min
The minimum allowed output value(if set to NaN, no minimum is applied)
public double Y_min
Field Value
Properties
Bias
The constant bias that is added so that models and dataset match on average, this value will depend on U0 and other parameters.
public double Bias { get; set; }
Property Value
BiasUnc
The 95% uncertainty of the bias
public double? BiasUnc { get; set; }
Property Value
CurvatureUnc
The unceratainties of the curvature term of the process gains
public double[] CurvatureUnc { get; set; }
Property Value
- double[]
Curvatures
The nonlinear curvature of the process gain, this paramter is multiplied + Curvatures*((u-u0)/Unorm)^2.
If value is nullc> then no curvatures are added to the model
public double[] Curvatures { get; set; }
Property Value
- double[]
DampingRatio
Damping (second-order) values between ~0.3-0.99 will cause step response with a single visibl overshoot. ) Set to zero to disable damping. As values less than 0.3 approach zero, the step response will become more and more oscillatory.
public double DampingRatio { get; set; }
Property Value
LinearGainUnc
An array of 95% uncertatinty in the linear gains (u-u0))
public double[] LinearGainUnc { get; set; }
Property Value
- double[]
LinearGains
An array of gains that determine how much in the steady state each input change affects the output(multiplied with (u-u0))
public double[] LinearGains { get; set; }
Property Value
- double[]
TimeConstantUnc_s
The uncertinty of the time constant estimate
public double? TimeConstantUnc_s { get; set; }
Property Value
TimeConstant_s
A time constant in seconds, the time a 1. order linear system requires to do 63% of a step response. Set to zero to turn off time constant in model.
public double TimeConstant_s { get; set; }
Property Value
TimeDelay_s
The time delay in seconds.This number needs to be a multiple of the sampling rate. Set to zero to turn off time delay in model.
public double TimeDelay_s { get; set; }
Property Value
U0
The working point of the model, the value of each U around which the model is localized.
If value is nullc> then no U0 is used in the model.
public double[] U0 { get; set; }
Property Value
- double[]
UNorm
A "normal range" of U that is used in the nonlinear curvature term ((u-u0)/Unorm)^2.
If value is nullc> then no UNorm is used in the model.
public double[] UNorm { get; set; }
Property Value
- double[]
Methods
AddWarning(UnitdentWarnings)
Adds an identification warning to the object.
public void AddWarning(UnitdentWarnings warning)
Parameters
warningUnitdentWarnings
CreateCopy()
Creates a deep-copy of the object.
public UnitParameters CreateCopy()
Returns
GetNumInputs()
Get the number of inputs U to the model.
public int GetNumInputs()
Returns
GetProcessGainUncertainties()
Get all the process gain uncertainties.
public double[] GetProcessGainUncertainties()
Returns
- double[]
GetProcessGains()
Get all process gains (including both linear and any nonlinear terms).
public double[] GetProcessGains()
Returns
- double[]
may return null if no process gains given.
GetTotalCombinedProcessGain(int)
Return the "total combined" process gain for a given index at u=u0, a combination of linear gain and curvature gain.
Note that for nonlinear processes, the process gain is given by a combination of the linear and curvature terms of the model : dy/du(u=u0)
public double GetTotalCombinedProcessGain(int inputIdx)
Parameters
inputIdxint
Returns
GetTotalCombinedProcessGainUncertainty(int)
Return the process gain uncertatinty for a given input index at u=u0.
Note that for nonlinear processes, the process gain is given by a combination of the linear and curvature terms of the model : dy/du(u=u0)
public double GetTotalCombinedProcessGainUncertainty(int inputIdx)
Parameters
inputIdxint
Returns
GetWarningList()
Get the list of all warnings given during identification of the model.
public List<UnitdentWarnings> GetWarningList()