Skip to the content.

Production Optimization Guide

New to process optimization? Start with the Optimization Overview to understand when to use which optimizer.

This guide provides comprehensive examples for setting up and running production optimization simulations in NeqSim, covering both Java and Python implementations.


What’s New (January 2026)

Behavior Changes

Bug Fixes

New Features


Document Description
Optimization Overview START HERE: When to use which optimizer
Optimizer Plugin Architecture ProcessOptimizationEngine and equipment strategies
Multi-Objective Optimization Pareto fronts and trade-offs
Flow Rate Optimization FlowRateOptimizer and lift curves
Batch Studies Parallel parameter sweeps
External Optimizer Integration Python/SciPy integration
CAPACITY_CONSTRAINT_FRAMEWORK.md Multi-constraint equipment and bottleneck detection

Overview

NeqSim provides a powerful production optimization framework that combines:

Component Description
ProductionOptimizer Core optimization engine with multiple search algorithms
CapacityConstrainedEquipment Multi-constraint interface for equipment limits
ProcessSystem.getBottleneck() Unified bottleneck detection (single & multi-constraint)
ProcessSystem.findBottleneck() Detailed constraint analysis with remediation hints

Key Features


Quick Start (Java)

Basic Production Rate Optimization

import neqsim.process.equipment.compressor.Compressor;
import neqsim.process.equipment.separator.Separator;
import neqsim.process.equipment.stream.Stream;
import neqsim.process.processmodel.ProcessSystem;
import neqsim.process.util.optimizer.ProductionOptimizer;
import neqsim.process.util.optimizer.ProductionOptimizer.*;
import neqsim.thermo.system.SystemInterface;
import neqsim.thermo.system.SystemSrkEos;

// 1. Create fluid system
SystemInterface fluid = new SystemSrkEos(298.15, 50.0);
fluid.addComponent("methane", 0.85);
fluid.addComponent("ethane", 0.08);
fluid.addComponent("propane", 0.05);
fluid.addComponent("n-butane", 0.02);
fluid.setMixingRule("classic");

// 2. Build process
ProcessSystem process = new ProcessSystem();

Stream feed = new Stream("Well Feed", fluid);
feed.setFlowRate(5000.0, "kg/hr");
process.add(feed);

Separator separator = new Separator("HP Separator");
separator.setInletStream(feed);
separator.initMechanicalDesign();
separator.getMechanicalDesign().setMaxDesignGassVolFlow(2000.0); // Sm3/hr limit
process.add(separator);

Compressor compressor = new Compressor("Gas Compressor");
compressor.setInletStream(separator.getGasOutStream());
compressor.setOutletPressure(100.0, "bara");
compressor.setMaximumSpeed(11000.0);  // RPM limit
compressor.setMaximumPower(500.0);    // kW limit
process.add(compressor);

process.run();

// 3. Configure optimization
OptimizationConfig config = new OptimizationConfig(1000.0, 20000.0)  // kg/hr range
    .rateUnit("kg/hr")
    .tolerance(10.0)
    .maxIterations(20)
    .defaultUtilizationLimit(0.95)  // 95% max utilization
    .utilizationLimitForType(Compressor.class, 0.90)  // 90% for compressors
    .searchMode(SearchMode.BINARY_FEASIBILITY);

// 4. Run optimization
OptimizationResult result = ProductionOptimizer.optimize(process, feed, config);

// 5. Report results
System.out.println("Optimal production rate: " + result.getOptimalRate() + " " + result.getRateUnit());
System.out.println("Bottleneck: " + result.getBottleneck().getName());
System.out.println("Bottleneck utilization: " + (result.getBottleneckUtilization() * 100) + "%");
System.out.println("Feasible: " + result.isFeasible());

Equipment Constraints and Active Bottlenecks

Which Equipment Can Restrict Production?

Any equipment implementing CapacityConstrainedEquipment can become the bottleneck, not just compressors. The optimizer checks ALL equipment constraints and reports the one limiting production.

Equipment Implemented Constraints Typical Bottleneck Scenarios
Separator gasLoadFactor, liquidResidenceTime High gas rates, high liquid rates
Compressor speed, power, surgeMargin, stonewallMargin High compression duty, variable conditions
Pump npshMargin, power, flowRate High liquid rates, cavitation risk
ThrottlingValve valveOpening, cvUtilization Large pressure drops, high flows
Pipeline velocity, pressureDrop, FIV_LOF, FIV_FRMS Long pipelines, high velocities
Heater/Cooler duty, outletTemperature High thermal loads

What is an “Active Constraint”?

An active constraint is the specific equipment limit that prevents increasing production further. It’s the “binding” constraint at the current operating point.

// After optimization, identify the active constraint
ProcessEquipmentInterface bottleneck = result.getBottleneck();

if (bottleneck instanceof CapacityConstrainedEquipment) {
    CapacityConstrainedEquipment constrained = (CapacityConstrainedEquipment) bottleneck;
    CapacityConstraint active = constrained.getBottleneckConstraint();
    
    System.out.println("=== ACTIVE CONSTRAINT ===");
    System.out.println("Equipment: " + bottleneck.getName());
    System.out.println("Constraint: " + active.getName());
    System.out.println("Current value: " + active.getCurrentValue() + " " + active.getUnit());
    System.out.println("Design limit: " + active.getDesignValue() + " " + active.getUnit());
    System.out.println("Utilization: " + active.getUtilizationPercent() + "%");
    System.out.println("Type: " + active.getConstraintType());  // HARD, SOFT, or DESIGN
}

Example scenarios where different equipment is the bottleneck:

Scenario Bottleneck Active Constraint Reason
High GOR well Separator gasLoadFactor K-factor limit exceeded
Low reservoir pressure Compressor power Compressor at max driver power
Long export line Pipeline velocity Erosional velocity limit
High water cut Pump npshMargin Insufficient NPSH available
Restricted outlet Valve valveOpening Valve fully open (90%)
Cold ambient Heater duty Maximum heating capacity

How Constraints Are Established

Constraints come from three sources:

When you call autoSize(), constraints are automatically created based on design calculations:

// Separator - sets gasLoadFactor constraint from K-factor sizing
Separator sep = new Separator("HP-Sep", feed);
sep.autoSize(1.2);  // Creates constraint: gasLoadFactor = design K-factor

// Compressor - sets speed, power, surge constraints + generates curves
Compressor comp = new Compressor("Export", gasStream);
comp.setOutletPressure(100.0);
comp.autoSize(1.2);  // Creates constraints: speed, power, surgeMargin
                     // Also generates compressor curves and sets solveSpeed=true

// Valve - sets valveOpening and Cv constraints
ThrottlingValve valve = new ThrottlingValve("HP-Valve", stream);
valve.setOutletPressure(30.0);
valve.autoSize(1.2);  // Creates constraints: valveOpening, cvUtilization

2. Manual Configuration

Set limits directly on equipment:

// Compressor limits
Compressor comp = new Compressor("K-100", stream);
comp.setMaximumSpeed(11000.0);    // Creates HARD speed constraint
comp.setMaximumPower(2000.0);     // Creates HARD power constraint
comp.setSurgeMargin(10.0);        // Creates SOFT surge margin constraint

// Separator limits
Separator sep = new Separator("V-100", feed);
sep.setDesignGasLoadFactor(0.08);  // Creates DESIGN gasLoadFactor constraint

// Pipeline limits
Pipeline pipe = new PipeBeggsAndBrills("L-100", stream);
pipe.setMaxLOF(1.0);               // Creates SOFT FIV_LOF constraint
pipe.setMaxFRMS(100000.0);         // Creates SOFT FIV_FRMS constraint

3. Mechanical Design Integration

When initMechanicalDesign() is called, constraints use design values:

Separator sep = new Separator("HP-Sep", feed);
sep.initMechanicalDesign();
sep.getMechanicalDesign().setMaxDesignGassVolFlow(5000.0);  // m³/hr
sep.getMechanicalDesign().setMaxDesignPressure(100.0);      // bara
// These values feed into constraint limits

Important: Constraints Are Disabled by Default

⚠️ Backward Compatibility: Most equipment types have constraints disabled by default to maintain backward compatibility. The optimizer will automatically fall back to traditional capacity methods when no enabled constraints exist.

Equipment with Disabled Constraints by Default:

Equipment with Enabled Constraints by Default:

To enable constraints for capacity analysis:

// Separators - use pre-configured sets
separator.useEquinorConstraints();  // Equinor TR3500 standards
separator.useAPIConstraints();      // API 12J standards
separator.useAllConstraints();      // All constraint types

// Or enable all constraints on any equipment
separator.enableConstraints();
valve.enableConstraints();
pipeline.enableConstraints();

// Check if constraints are enabled
boolean hasEnabled = equipment.getCapacityConstraints().values().stream()
    .anyMatch(CapacityConstraint::isEnabled);

For detailed information, see Capacity Constraint Framework - Constraints Disabled by Default.

Constraint Types and Their Behavior

Type Meaning Optimization Behavior Example
HARD Physical or safety limit - cannot exceed Optimization stops before exceeding Compressor trip speed, vessel MAWP
SOFT Operational limit - penalty for exceeding Can exceed with warning/penalty Efficiency degradation zone
DESIGN Normal operating envelope Target for optimal operation Design K-factor, rated capacity

Full Process Example: Finding Active Constraint

// Build a realistic process
ProcessSystem process = new ProcessSystem();

// Feed from reservoir
Stream wellFeed = new Stream("Well Feed", reservoirFluid);
wellFeed.setFlowRate(20000.0, "kg/hr");

// Three-phase separation
ThreePhaseSeparator hpSep = new ThreePhaseSeparator("HP Separator", wellFeed);
hpSep.autoSize(1.2);  // Constraints: gasLoadFactor, liquidResidenceTime

// Gas compression
Compressor gasComp = new Compressor("Gas Compressor", hpSep.getGasOutStream());
gasComp.setOutletPressure(100.0);
gasComp.autoSize(1.2);  // Constraints: speed, power, surgeMargin + curves

// Export pipeline
PipeBeggsAndBrills exportPipe = new PipeBeggsAndBrills("Export Pipeline", gasComp.getOutletStream());
exportPipe.setLength(50000.0);  // 50 km
exportPipe.setDiameter(0.4);    // 16 inch
exportPipe.autoSize(1.2);       // Constraints: velocity, pressureDrop, FIV_LOF, FIV_FRMS

// Liquid pump
Pump oilPump = new Pump("Oil Pump", hpSep.getOilOutStream());
oilPump.setOutletPressure(15.0);
// Pump has: npshMargin, power, flowRate constraints

process.add(wellFeed);
process.add(hpSep);
process.add(gasComp);
process.add(exportPipe);
process.add(oilPump);
process.run();

// Run optimization
OptimizationConfig config = new OptimizationConfig(5000.0, 50000.0)
    .rateUnit("kg/hr")
    .defaultUtilizationLimit(0.95);

OptimizationResult result = ProductionOptimizer.optimize(process, wellFeed, config);

// Report ALL equipment constraints and identify the active one
System.out.println("=== CONSTRAINT STATUS FOR ALL EQUIPMENT ===\n");

for (CapacityConstrainedEquipment equip : process.getConstrainedEquipment()) {
    ProcessEquipmentInterface unit = (ProcessEquipmentInterface) equip;
    boolean isBottleneck = unit.equals(result.getBottleneck());
    
    System.out.println(unit.getName() + (isBottleneck ? " ⭐ BOTTLENECK" : "") + ":");
    
    CapacityConstraint limitingConstraint = equip.getBottleneckConstraint();
    
    for (CapacityConstraint c : equip.getCapacityConstraints().values()) {
        boolean isActive = c.equals(limitingConstraint) && isBottleneck;
        String marker = isActive ? " ◀ ACTIVE" : "";
        String status = c.isViolated() ? "⚠️" : c.isNearLimit() ? "⚡" : "✓";
        
        System.out.printf("  %s %-18s: %7.2f / %7.2f %-6s (%5.1f%%)%s%n",
            status,
            c.getName(),
            c.getCurrentValue(),
            c.getDesignValue(),
            c.getUnit(),
            c.getUtilizationPercent(),
            marker);
    }
    System.out.println();
}

System.out.println("=== OPTIMIZATION RESULT ===");
System.out.println("Optimal production rate: " + result.getOptimalRate() + " kg/hr");
System.out.println("Bottleneck equipment: " + result.getBottleneck().getName());
System.out.println("Feasible: " + result.isFeasible());

Example output:

=== CONSTRAINT STATUS FOR ALL EQUIPMENT ===

HP Separator:
  ✓ gasLoadFactor     :    0.07 /    0.08 m/s    (87.5%)
  ✓ liquidResidence   :    2.80 /    3.00 min    (93.3%)

Gas Compressor ⭐ BOTTLENECK:
  ⚡ speed             : 9800.00 / 10000.00 RPM    (98.0%) ◀ ACTIVE
  ✓ power             : 1650.00 /  2000.00 kW     (82.5%)
  ✓ surgeMargin       :   12.00 /   10.00 %      (83.3%)

Export Pipeline:
  ✓ velocity          :   12.50 /   15.00 m/s    (83.3%)
  ✓ pressureDrop      :    3.80 /    5.00 bara   (76.0%)
  ✓ FIV_LOF           :    0.28 /    1.00 -      (28.0%)

Oil Pump:
  ✓ npshMargin        :    2.50 /    0.60 m      (24.0%)
  ✓ power             :   85.00 /  150.00 kW     (56.7%)

=== OPTIMIZATION RESULT ===
Optimal production rate: 28500 kg/hr
Bottleneck equipment: Gas Compressor
Feasible: true

In this example, the Gas Compressor is the bottleneck with speed as the active constraint at 98% utilization.


Capacity Constraint Framework

Setting Up Multi-Constraint Equipment

Equipment implementing CapacityConstrainedEquipment can have multiple constraints:

// Separator with gas load factor constraint
Separator separator = new Separator("HP Separator");
separator.setDesignGasLoadFactor(0.15);  // K-factor limit

// Access constraints
for (CapacityConstraint constraint : separator.getCapacityConstraints()) {
    System.out.println("Constraint: " + constraint.getName());
    System.out.println("  Type: " + constraint.getConstraintType());
    System.out.println("  Current: " + constraint.getCurrentValue());
    System.out.println("  Limit: " + constraint.getLimitValue());
    System.out.println("  Utilization: " + (constraint.getUtilization() * 100) + "%");
    System.out.println("  Is Violated: " + constraint.isViolated());
}

// Check overall utilization
double maxUtil = separator.getMaxUtilization();
CapacityConstraint limiting = separator.getLimitingConstraint();
System.out.println("Limiting constraint: " + limiting.getName() + " at " + (maxUtil * 100) + "%");

Compressor with Multiple Constraints

Compressor compressor = new Compressor("Export Compressor");
compressor.setMaximumSpeed(11000.0);      // HARD constraint - RPM
compressor.setMaximumPower(2000.0);       // HARD constraint - kW
compressor.setSurgeMargin(10.0);          // SOFT constraint - %

// After running, check all constraints
process.run();

for (CapacityConstraint c : compressor.getCapacityConstraints()) {
    String status = c.isViolated() ? "⚠️ EXCEEDED" : "✓ OK";
    System.out.printf("%s: %.1f / %.1f (%.0f%%) %s%n",
        c.getName(), c.getCurrentValue(), c.getLimitValue(),
        c.getUtilization() * 100, status);
}

Advanced Optimization Configurations

With Custom Objectives and Constraints

import java.util.Arrays;
import java.util.List;

// Define objectives
List<OptimizationObjective> objectives = Arrays.asList(
    new OptimizationObjective("Production", 
        ps -> ((Stream) ps.getUnit("Well Feed")).getFlowRate("kg/hr"), 
        1.0, ObjectiveType.MAXIMIZE),
    new OptimizationObjective("Efficiency",
        ps -> ((Compressor) ps.getUnit("Gas Compressor")).getPolytropicEfficiency(),
        0.5, ObjectiveType.MAXIMIZE)
);

// Define constraints
List<OptimizationConstraint> constraints = Arrays.asList(
    OptimizationConstraint.lessThan("Max Export Pressure",
        ps -> ((Stream) ps.getUnit("Export Gas")).getPressure("bara"),
        105.0, ConstraintSeverity.HARD, 10.0, "Export pipeline limit"),
    OptimizationConstraint.greaterThan("Min Separator Temp",
        ps -> ((Separator) ps.getUnit("HP Separator")).getGasOutStream().getTemperature("C"),
        -10.0, ConstraintSeverity.SOFT, 5.0, "Hydrate prevention")
);

// Run with objectives and constraints
OptimizationResult result = ProductionOptimizer.optimize(
    process, feed, config, objectives, constraints);

// Check constraint statuses
for (ConstraintStatus status : result.getConstraintStatuses()) {
    System.out.printf("%s: margin=%.2f, violated=%s%n",
        status.getName(), status.getMargin(), status.violated());
}

Scenario Comparison

import java.util.Arrays;
import java.util.List;

// Define scenarios
List<ScenarioRequest> scenarios = Arrays.asList(
    new ScenarioRequest("Summer", process.copy(), feed, 
        new OptimizationConfig(1000.0, 20000.0).rateUnit("kg/hr"),
        objectives, constraints),
    new ScenarioRequest("Winter", processWinter.copy(), feedWinter,
        new OptimizationConfig(1000.0, 25000.0).rateUnit("kg/hr"),
        objectives, constraints)
);

// Define KPIs for comparison
List<ScenarioKpi> kpis = Arrays.asList(
    new ScenarioKpi("Max Rate", "kg/hr", r -> r.getOptimalRate()),
    new ScenarioKpi("Bottleneck Util", "%", r -> r.getBottleneckUtilization() * 100)
);

// Run comparison
ScenarioComparisonResult comparison = ProductionOptimizer.compareScenarios(scenarios, kpis);

// Print results
for (ScenarioResult sr : comparison.getResults()) {
    System.out.printf("Scenario '%s': %.0f kg/hr (bottleneck: %s)%n",
        sr.getName(), sr.getResult().getOptimalRate(), 
        sr.getResult().getBottleneck().getName());
}

Search Algorithms

// Binary search (default) - fast for monotonic responses
config.searchMode(SearchMode.BINARY_FEASIBILITY);

// Golden-section - handles non-monotonic responses
config.searchMode(SearchMode.GOLDEN_SECTION_SCORE);

// Nelder-Mead simplex - multi-dimensional optimization
config.searchMode(SearchMode.NELDER_MEAD_SCORE);

// Particle-swarm - global optimization
config.searchMode(SearchMode.PARTICLE_SWARM_SCORE)
    .swarmSize(8)
    .inertiaWeight(0.6)
    .cognitiveWeight(1.2)
    .socialWeight(1.2);

ProcessSystem Bottleneck Analysis

Basic Bottleneck Detection

// Run the process
process.run();

// Get bottleneck (unified - checks both single and multi-constraint)
ProcessEquipmentInterface bottleneck = process.getBottleneck();
System.out.println("Bottleneck: " + bottleneck.getName());
System.out.printf("Utilization: %.1f%%%n", process.getBottleneckUtilization() * 100);

Detailed Constraint Analysis

import neqsim.process.equipment.capacity.BottleneckResult;
import neqsim.process.equipment.capacity.CapacityConstraint;

// Get detailed bottleneck result
BottleneckResult bottleneckResult = process.findBottleneck();

System.out.println("Bottleneck Equipment: " + bottleneckResult.getEquipmentName());
System.out.println("Limiting Constraint: " + bottleneckResult.getLimitingConstraintName());
System.out.printf("Utilization: %.1f%%%n", bottleneckResult.getUtilization() * 100);

// Iterate all constraints on bottleneck
for (CapacityConstraint c : bottleneckResult.getAllConstraints()) {
    System.out.printf("  - %s: %.1f%% (%s)%n", 
        c.getName(), c.getUtilization() * 100, c.getConstraintType());
}

Capacity Utilization Summary

import java.util.Map;

// Get all equipment utilizations
Map<String, Double> utilizations = process.getCapacityUtilizationSummary();

System.out.println("=== Capacity Utilization Summary ===");
for (Map.Entry<String, Double> entry : utilizations.entrySet()) {
    String bar = createProgressBar(entry.getValue());
    System.out.printf("%s: %s %.0f%%%n", entry.getKey(), bar, entry.getValue() * 100);
}

// Check for equipment near limits
double threshold = 0.85; // 85%
for (ProcessEquipmentInterface equip : process.getEquipmentNearCapacityLimit(threshold)) {
    System.out.println("⚠️ Near limit: " + equip.getName());
}

// Check for any overloaded equipment
if (process.isAnyEquipmentOverloaded()) {
    System.out.println("❌ Equipment overloaded!");
}
if (process.isAnyHardLimitExceeded()) {
    System.out.println("🛑 HARD limit exceeded - system unsafe!");
}

Python Examples (neqsim-python)

NeqSim Python uses JPype for direct Java access. All Java classes are available through the neqsim package.

Basic Setup

# Install neqsim-python: pip install neqsim

import neqsim
from neqsim.thermo import fluid
from neqsim.process import stream, separator, compressor, processSystem

Production Optimization in Python

import jpype
import jpype.imports
from jpype.types import *

# Ensure JVM is started (neqsim does this automatically)
import neqsim

# Import Java classes directly
from neqsim.thermo.system import SystemSrkEos
from neqsim.process.equipment.stream import Stream
from neqsim.process.equipment.separator import Separator  
from neqsim.process.equipment.compressor import Compressor
from neqsim.process.processmodel import ProcessSystem
from neqsim.process.util.optimizer import ProductionOptimizer

# Create fluid
fluid = SystemSrkEos(298.15, 50.0)
fluid.addComponent("methane", 0.85)
fluid.addComponent("ethane", 0.08)
fluid.addComponent("propane", 0.05)
fluid.addComponent("n-butane", 0.02)
fluid.setMixingRule("classic")

# Build process
process = ProcessSystem()

feed = Stream("Well Feed", fluid)
feed.setFlowRate(5000.0, "kg/hr")
process.add(feed)

sep = Separator("HP Separator")
sep.setInletStream(feed)
process.add(sep)

comp = Compressor("Gas Compressor")
comp.setInletStream(sep.getGasOutStream())
comp.setOutletPressure(100.0, "bara")
comp.setMaximumSpeed(11000.0)
comp.setMaximumPower(500.0)
process.add(comp)

process.run()

# Configure optimization
OptConfig = ProductionOptimizer.OptimizationConfig
SearchMode = ProductionOptimizer.SearchMode

config = OptConfig(1000.0, 20000.0) \
    .rateUnit("kg/hr") \
    .tolerance(10.0) \
    .maxIterations(20) \
    .defaultUtilizationLimit(0.95) \
    .searchMode(SearchMode.BINARY_FEASIBILITY)

# Run optimization
result = ProductionOptimizer.optimize(process, feed, config)

# Print results
print(f"Optimal rate: {result.getOptimalRate():.0f} {result.getRateUnit()}")
print(f"Bottleneck: {result.getBottleneck().getName()}")
print(f"Utilization: {result.getBottleneckUtilization() * 100:.1f}%")
print(f"Feasible: {result.isFeasible()}")

Configuring Restrictions and Constraints in Python

Python provides full access to all restriction configuration options through the OptimizationConfig builder pattern.

Controlling Simulation Validity

# Strict mode (recommended for production)
config = OptConfig(1000.0, 20000.0) \
    .rejectInvalidSimulations(True) \
    .defaultUtilizationLimit(0.95)

# Exploration mode (for debugging/investigation)
config = OptConfig(1000.0, 50000.0) \
    .rejectInvalidSimulations(False) \
    .defaultUtilizationLimit(2.0)  # Allow simulated overload

Per-Equipment Utilization Limits

# Import equipment classes for type-based limits
Compressor = jneqsim.process.equipment.compressor.Compressor
Separator = jneqsim.process.equipment.separator.Separator
Pump = jneqsim.process.equipment.pump.Pump

# Configure per-equipment limits
config = OptConfig(1000.0, 20000.0) \
    .rateUnit("kg/hr") \
    .defaultUtilizationLimit(1.0) \
    .utilizationLimitForName("Export Compressor", 0.90) \
    .utilizationLimitForName("HP Separator", 1.05) \
    .utilizationLimitForType(Compressor, 0.95) \
    .utilizationLimitForType(Pump, 0.90)

Disabling Capacity Analysis on Equipment

# Exclude specific equipment from bottleneck detection
heater = process.getUnit("Gas Heater")
heater.setCapacityAnalysisEnabled(False)

manifold = process.getUnit("Production Manifold")
manifold.setCapacityAnalysisEnabled(False)

# Now these won't be considered as bottlenecks
result = ProductionOptimizer.optimize(process, feed, config)

Adding Custom Constraints

from jpype import JImplements, JOverride

# Import constraint classes
OptimizationConstraint = ProductionOptimizer.OptimizationConstraint
ConstraintSeverity = ProductionOptimizer.ConstraintSeverity

# Define a constraint evaluator
@JImplements("java.util.function.ToDoubleFunction")
class PowerEvaluator:
    @JOverride
    def applyAsDouble(self, proc):
        comp = proc.getUnit("Gas Compressor")
        return comp.getPower("kW") if comp else 0.0

# Create HARD constraint (must be satisfied)
power_constraint = OptimizationConstraint.lessThan(
    "Max Power",                    # Name
    PowerEvaluator(),               # Evaluator function
    450.0,                          # Limit (kW)
    ConstraintSeverity.HARD,        # Cannot be violated
    0.0,                            # Penalty weight (unused for HARD)
    "Compressor driver power limit" # Description
)

# Create SOFT constraint (penalty for violation)
@JImplements("java.util.function.ToDoubleFunction")
class SurgeMarginEvaluator:
    @JOverride
    def applyAsDouble(self, proc):
        comp = proc.getUnit("Gas Compressor")
        return comp.getSurgeMargin() if hasattr(comp, 'getSurgeMargin') else 0.2

margin_constraint = OptimizationConstraint.greaterThan(
    "Surge Margin",
    SurgeMarginEvaluator(),
    0.10,                           # Minimum 10% surge margin
    ConstraintSeverity.SOFT,        # Can be violated with penalty
    100.0,                          # Penalty weight
    "Maintain adequate surge margin"
)

# Create constraint list
from java.util import Arrays
constraints = Arrays.asList(power_constraint, margin_constraint)

# Run optimization with constraints
result = ProductionOptimizer.optimize(process, feed, config, None, constraints)

Common Restriction Configuration Patterns

# Pattern 1: Safe Production Operation
config_safe = OptConfig(1000.0, 20000.0) \
    .rejectInvalidSimulations(True) \
    .defaultUtilizationLimit(0.90) \
    .searchMode(SearchMode.BINARY_FEASIBILITY)

# Pattern 2: Maximum Capacity Search
config_max = OptConfig(1000.0, 50000.0) \
    .rejectInvalidSimulations(True) \
    .defaultUtilizationLimit(1.0) \
    .searchMode(SearchMode.GOLDEN_SECTION_SCORE)

# Pattern 3: Equipment Sizing Study
config_sizing = OptConfig(1000.0, 100000.0) \
    .rejectInvalidSimulations(False) \
    .defaultUtilizationLimit(999.0) \
    .searchMode(SearchMode.PARTICLE_SWARM_SCORE)

# Pattern 4: Critical Equipment Protection
config_critical = OptConfig(1000.0, 20000.0) \
    .rejectInvalidSimulations(True) \
    .defaultUtilizationLimit(1.0) \
    .utilizationLimitForName("Critical Compressor", 0.85) \
    .utilizationLimitForName("Aging Pump", 0.80) \
    .searchMode(SearchMode.BINARY_FEASIBILITY)

Multi-Constraint Analysis in Python

from neqsim.process.equipment.capacity import BottleneckResult, CapacityConstraint

# Get detailed bottleneck
bottleneck_result = process.findBottleneck()

print(f"Bottleneck: {bottleneck_result.getEquipmentName()}")
print(f"Limiting: {bottleneck_result.getLimitingConstraintName()}")
print(f"Utilization: {bottleneck_result.getUtilization() * 100:.1f}%")

# Check all constraints
for constraint in bottleneck_result.getAllConstraints():
    status = "⚠️ VIOLATED" if constraint.isViolated() else "✓ OK"
    print(f"  {constraint.getName()}: {constraint.getUtilization()*100:.0f}% {status}")

Capacity Summary in Python

# Get utilization summary
utilizations = process.getCapacityUtilizationSummary()

print("=== Capacity Utilization ===")
for name, util in utilizations.items():
    bar = "█" * int(util * 20) + "░" * (20 - int(util * 20))
    print(f"{name}: [{bar}] {util*100:.0f}%")

# Check near-limit equipment
threshold = 0.85
near_limit = process.getEquipmentNearCapacityLimit(threshold)
for equip in near_limit:
    print(f"⚠️ Near limit: {equip.getName()}")

Scenario Comparison in Python

from java.util import Arrays, ArrayList

# Create scenarios
ScenarioRequest = ProductionOptimizer.ScenarioRequest
ScenarioKpi = ProductionOptimizer.ScenarioKpi

scenarios = ArrayList()

# Scenario 1: Base case
config1 = OptConfig(1000.0, 20000.0).rateUnit("kg/hr")
scenarios.add(ScenarioRequest("Base Case", process, feed, config1, None, None))

# Scenario 2: High pressure export
process2 = process.copy()
comp2 = process2.getUnit("Gas Compressor")
comp2.setOutletPressure(120.0, "bara")
config2 = OptConfig(1000.0, 18000.0).rateUnit("kg/hr")
feed2 = process2.getUnit("Well Feed")
scenarios.add(ScenarioRequest("High Pressure", process2, feed2, config2, None, None))

# Define KPIs
kpis = ArrayList()
kpis.add(ScenarioKpi("Max Rate", "kg/hr", lambda r: r.getOptimalRate()))
kpis.add(ScenarioKpi("Bottleneck Util", "%", lambda r: r.getBottleneckUtilization() * 100))

# Compare
comparison = ProductionOptimizer.compareScenarios(scenarios, kpis)

for sr in comparison.getResults():
    print(f"{sr.getName()}: {sr.getResult().getOptimalRate():.0f} kg/hr")

Integration with External Systems

JSON Export for Dashboards

// Get optimization summary as structured data
OptimizationSummary summary = ProductionOptimizer.optimizeSummary(process, feed, config);

// Convert to JSON using Gson
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

Gson gson = new GsonBuilder().setPrettyPrinting().create();
String json = gson.toJson(summary);
System.out.println(json);

Iteration History for Plotting

// Get full result with history
OptimizationResult result = ProductionOptimizer.optimize(process, feed, config);

// Export iteration history for plotting
List<IterationRecord> history = result.getIterationHistory();

System.out.println("Rate,Bottleneck,Utilization,Feasible,Score");
for (IterationRecord record : history) {
    System.out.printf("%.1f,%s,%.3f,%s,%.4f%n",
        record.getRate(),
        record.getBottleneckName(),
        record.getBottleneckUtilization(),
        record.isFeasible(),
        record.getScore());
}

Real-Time Optimization Loop

import time

# Continuous optimization loop
while True:
    # Update feed conditions from real-time data
    feed.setTemperature(get_realtime_temp(), "C")
    feed.setPressure(get_realtime_pressure(), "bara")
    
    # Re-run process
    process.run()
    
    # Check constraints
    if process.isAnyHardLimitExceeded():
        print("🛑 ALARM: Hard limit exceeded!")
        trigger_alarm()
    
    # Get current bottleneck
    bottleneck = process.getBottleneck()
    util = process.getBottleneckUtilization()
    
    # Log to historian
    log_to_historian({
        "bottleneck": bottleneck.getName(),
        "utilization": util,
        "timestamp": time.time()
    })
    
    # Run periodic optimization
    if should_optimize():
        result = ProductionOptimizer.optimize(process, feed, config)
        recommend_setpoint(result.getOptimalRate())
    
    time.sleep(60)  # 1-minute interval

Equipment Support Matrix

Equipment getCapacityDuty() getCapacityMax() CapacityConstrainedEquipment
Separator ✅ Liquid level fraction ✅ 1.0 (100% fill) ✅ Gas load factor constraint
Compressor ✅ Power (kW) ✅ Max power ✅ Speed, power, surge, stonewall margin
Pump ✅ Power (kW) ✅ Max power ✅ Capacity constraints
Heater/Cooler ✅ Duty (kW) ✅ Max duty ✅ Duty constraint
HeatExchanger ✅ Duty (kW) ✅ Max duty ✅ Duty constraint
Valve ✅ Opening (%) ✅ Max opening ✅ (only if max < 100% set)
Pipe ✅ Superficial velocity ✅ Max velocity ✅ Velocity constraint
DistillationColumn ✅ Fs factor ✅ Max Fs factor ❌ (planned)
Manifold ✅ Velocity ✅ Erosional velocity ✅ FIV analysis

Notes:


Best Practices

1. Set Realistic Equipment Limits

// Always set mechanical design limits
separator.initMechanicalDesign();
separator.getMechanicalDesign().setMaxDesignGassVolFlow(2000.0);

// Or use K-factor approach
separator.setDesignGasLoadFactor(0.15);

// Set compressor limits
compressor.setMaximumSpeed(11000.0);
compressor.setMaximumPower(500.0);

2. Use Appropriate Utilization Margins

// Conservative (debottlenecking studies)
config.defaultUtilizationLimit(0.80);

// Normal operations
config.defaultUtilizationLimit(0.95);

// Stress testing
config.defaultUtilizationLimit(1.05);  // Allow some overage with penalties

3. Configure Equipment-Specific Limits

config.utilizationLimitForName("Critical Compressor", 0.85)
      .utilizationLimitForType(Separator.class, 0.90)
      .utilizationLimitForType(Compressor.class, 0.88);

4. Use Hard Constraints for Safety

5. Compressor Curves with Optimization

When using compressor performance curves with the optimizer, follow this setup sequence:

// 1. Create and run compressor to establish design point
Compressor compressor = new Compressor("Export Compressor", gasScrubber.getGasOutStream());
compressor.setOutletPressure(80.0, "bara");
compressor.setPolytropicEfficiency(0.78);
compressor.setUsePolytropicCalc(true);
process.add(compressor);
process.run();

// 2. Generate compressor chart at design point
CompressorChartGenerator chartGen = new CompressorChartGenerator(compressor);
chartGen.setChartType("interpolate and extrapolate");
CompressorChartInterface chart = chartGen.generateCompressorChart("normal curves", 5);
compressor.setCompressorChart(chart);
compressor.getCompressorChart().setUseCompressorChart(true);

// 3. IMPORTANT: Set max speed higher than operating speed
// This defines the available headroom for optimization
double designSpeed = compressor.getSpeed();
compressor.setMaximumSpeed(designSpeed * 1.15);  // 15% speed margin

// 4. Re-run process and reinitialize constraints
process.run();
compressor.reinitializeCapacityConstraints();  // Updates constraints with curve limits

// 5. Now optimize - bounds must respect surge/stonewall
double lowerBound = currentRate * 0.96;  // Stay above surge
double upperBound = currentRate * 1.10;  // Stay below stonewall

OptimizationConfig config = new OptimizationConfig(lowerBound, upperBound)
    .rateUnit("kg/hr")
    .capacityRuleForType(Compressor.class, new CapacityRule(
        unit -> ((CapacityConstrainedEquipment) unit).getMaxUtilization(),
        unit -> 1.0))
    .utilizationLimitForType(Compressor.class, 1.0);  // 100% since getMaxUtilization is a ratio

OptimizationResult result = optimizer.optimize(process, feedStream, config,
    Collections.emptyList(), Collections.emptyList());

Key Points:

// HARD constraints cannot be violated
OptimizationConstraint.lessThan("Max Pressure",
    ps -> ps.getUnit("Export").getPressure("bara"),
    150.0, ConstraintSeverity.HARD, 100.0, "Pipeline MAWP");

// SOFT constraints add penalties but allow operation
OptimizationConstraint.greaterThan("Target Temperature",
    ps -> ps.getUnit("Cooler").getOutStream().getTemperature("C"),
    35.0, ConstraintSeverity.SOFT, 5.0, "Target export temp");

5. Validate Before Optimization

// Check that all equipment is properly configured
for (ProcessEquipmentInterface unit : process.getUnitOperations()) {
    if (unit.getCapacityMax() <= 0) {
        System.out.println("Warning: " + unit.getName() + " has no capacity limit set");
    }
}

Troubleshooting

Problem: Optimization finds no feasible solution

Possible causes:

  1. Lower bound is too high
  2. Equipment limits are too tight
  3. Hard constraints cannot be satisfied

Solution:

// Check constraints at minimum rate
feed.setFlowRate(config.lowerBound, "kg/hr");
process.run();

for (ProcessEquipmentInterface unit : process.getUnitOperations()) {
    double util = unit.getCapacityDuty() / unit.getCapacityMax();
    if (util > 1.0) {
        System.out.println("Already exceeded at min rate: " + unit.getName());
    }
}

// Use infeasibility diagnostics (New)
OptimizationResult result = optimizer.optimize(process, feed, config);
if (!result.isFeasible()) {
    System.out.println(result.getInfeasibilityDiagnosis());
}

Problem: Bottleneck changes unexpectedly

Solution: Use iteration history to understand the search:

for (IterationRecord r : result.getIterationHistory()) {
    System.out.printf("Rate=%.0f, Bottleneck=%s, Util=%.1f%%%n",
        r.getRate(), r.getBottleneckName(), r.getBottleneckUtilization() * 100);
}

Problem: Slow optimization

Solutions:

  1. Reduce search range
  2. Increase tolerance
  3. Use binary search for monotonic problems
  4. Enable caching with size limit
  5. Use stagnation detection (New)
  6. Use warm start when re-optimizing (New)
config.tolerance(50.0)  // Coarser tolerance
      .maxIterations(15)
      .enableCaching(true)
      .maxCacheSize(500)               // Bounded cache (New)
      .stagnationIterations(5)         // Early termination (New)
      .searchMode(SearchMode.BINARY_FEASIBILITY);

// For re-optimization, use warm start (New)
double[] previousOptimal = new double[]{lastResult.getOptimalRate()};
config.initialGuess(previousOptimal);

Problem: Invalid configuration causes runtime errors

Solution: Validate configuration before optimization (New):

try {
    config.validate();  // Throws if invalid
} catch (IllegalArgumentException e) {
    System.out.println("Configuration error: " + e.getMessage());
}


API Reference

ProductionOptimizer

Method Description
optimize(ProcessSystem, StreamInterface, OptimizationConfig) Find optimal feed rate
optimize(ProcessSystem, StreamInterface, OptimizationConfig, List<Objective>, List<Constraint>) With objectives/constraints
optimizeSummary(...) Returns lightweight summary
compareScenarios(List<ScenarioRequest>, List<ScenarioKpi>) Compare multiple scenarios

OptimizationConfig (New Methods)

Method Description
validate() Validates configuration, throws if invalid
stagnationIterations(int) Stop after N iterations with no improvement (default: 5)
maxCacheSize(int) Maximum LRU cache entries (default: 1000)
initialGuess(double[]) Starting point for warm start optimization

OptimizationResult (New Methods)

Method Description
getInfeasibilityDiagnosis() Detailed report of constraint violations

ProcessSystem

Method Description
getBottleneck() Get equipment with highest utilization
getBottleneckUtilization() Get utilization of bottleneck
findBottleneck() Get detailed BottleneckResult
getConstrainedEquipment() Get all CapacityConstrainedEquipment
isAnyEquipmentOverloaded() Check if any utilization > 100%
isAnyHardLimitExceeded() Check if any HARD constraint violated
getCapacityUtilizationSummary() Map of equipment name → utilization
getEquipmentNearCapacityLimit(threshold) Equipment above threshold

CapacityConstrainedEquipment

Method Description
getCapacityConstraints() List all constraints
getLimitingConstraint() Get highest-utilization constraint
getMaxUtilization() Get maximum utilization across constraints
isOverloaded() Any constraint > 100%
isHardLimitExceeded() Any HARD constraint violated